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Abstract

Background: A central unsolved problem in early evolution concerns self-organization towards higher complexity in
chemical reaction networks. In theory, autocatalytic sets have useful properties to help model such transitions.
Autocatalytic sets are chemical reaction systems in which molecules belonging to the set catalyze the synthesis of
other members of the set. Given an external supply of starting molecules – the food set – and the conditions that (i) all
reactions are catalyzed by at least one molecule, and (ii) each molecule can be constructed from the food set by a
sequence of reactions, the system becomes a reflexively autocatalytic food-generated network (RAF set). Autocatalytic
networks and RAFs have been studied extensively as mathematical models for understanding the properties and
parameters that influence self-organizational tendencies. However, despite their appeal, the relevance of RAFs for real
biochemical networks that exist in nature has, so far, remained virtually unexplored.

Results: Here we investigate the best-studied metabolic network, that of Escherichia coli, for the existence of RAFs.
We find that the largest RAF encompasses almost the entire E. coli cytosolic reaction network. We systematically study
its structure by considering the impact of removing catalysts or reactions. We show that, without biological
knowledge, finding the minimum food set that maintains a given RAF is NP-complete. We apply a randomized
algorithm to find (approximately) smallest subsets of the food set that suffice to sustain the original RAF.

Conclusions: The existence of RAF sets within a microbial metabolic network indicates that RAFs capture properties
germane to biological organization at the level of single cells. Moreover, the interdependency between the different
metabolic modules, especially concerning cofactor biosynthesis, points to the important role of spontaneous
(non-enzymatic) reactions in the context of early evolution.
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Background
Autocatalytic sets were initially proposed as chemical
reaction networks with intrinsic properties that could
promote a natural rudimentary selection process en route
towards self organization in chemical evolution [1-4].
Until now, autocatalytic sets were mostly theoretical con-
structs, with only a few artificially designed and con-
structed examples in real chemistry [5-10]. However, with
one exception [11], actual (evolved) biological networks
have not been studied explicitly in the context of auto-
catalytic sets. Here, we take a step in this direction.
In particular, we apply a formal framework for auto-
catalytic sets, known as RAF theory (see Experimental
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below), to the best-studied metabolic network, that
of E. coli.
In order to perform such an analysis, we had to mod-

ify the available E. coli metabolic network data [12] to
conform to the formal RAF framework. For example,
since most of the metabolic reactions dealing with car-
bon and energy metabolism occur within the cytoplasm,
the periplasmic reactions as well as transport reactions
between the environment, periplasm and cytoplasm were
discarded. The exceptions are a few reactions annotated
as oxidative phosphorylation, for example cytochrome c
reduction and oxidation, which were kept. Also, to apply
the RAF algorithm to E. coli metabolism, the network
has to be expressed in terms of molecules-reactions-
catalysts and, when possible, having the catalyst of each
reaction expressed in terms of the cofactors present in
the enzyme that catalyzes the reaction. In our definition,

© 2015 Sousa et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

mailto: Filipa.Sousa@hhu.de
http://creativecommons.org/licenses/by/4.0


Sousa et al. Journal of Systems Chemistry  (2015) 6:4 Page 2 of 21

we include as cofactors all non-protein chemical com-
pounds that are present and/or assist a biochemical
transformation. Thus, metal ions, iron-sulfur centers, as
well as organic molecules such as flavins or quinones
were considered as cofactors. Moreover, if a cofactor
like the ones above mentioned is a reactant within a
chemical reaction, it would be considered a catalyst of
that reaction as well. We did not make any distinction
between quinone types, flavin-species or NAD-species
partially because of lack of information within annota-
tions and also due to possible promiscuity between the
use of analog cofactors. This approach is in agreement
with the view that cofactors themselves, metals or even
simple amino acids were the initial catalysts of biolog-
ical reactions [13-19]. This principle can be illustrated
with the example of the cofactor pyridoxal phosphate
(PLP): in a comparison of 2-aminoisobutyrate decarboxy-
lation reactions catalyzed by a PLP-dependent enzyme,
the enzyme-PLP complex was shown to increase the
reaction rate 1018-fold, whereas in the absence of the
enzyme, PLP alone increased the rate of decarboxyla-
tion by 1010-fold [20]. As for invoking the role of metals
as early catalysts, the continuous abiotic production of
methane and formate by serpentinization reactions shows
a common trail that connects biology with geochem-
ical occurring reactions whose metal-based “catalysts”
embedded in minerals resemble the metal centers found
in modern enzymes [21]. This support the view shared by
many of the important role of metals in early evolution
[14,16,22,23].
Having thus prepared the E. coli metabolic network for

analysis, we applied the RAF framework to search for
autocatalytic sets within it, studied their structure, and
performed sensitivity analyses in terms of importance of
individual molecules, reactions, and catalysts.

Experimental
Autocatalytic sets
The concept of autocatalytic sets was introduced several
decades ago [2-4], and formalized more recently with RAF
theory [24-26]. It aims to model life as a functionally
closed, self-sustaining reaction system. We briefly review
the main definitions and results of RAF theory here.
First, a chemical reaction system (CRS) is defined as

a tuple Q = {X,R,C} consisting of a set of chemical
species (molecule types) X, a set of chemical reactions
R, and a catalysis set C indicating which molecule types
catalyze which reactions. Next, the notion of a food set
F ⊂ X is included, which is a subset of molecule types
that are assumed to be freely available from the environ-
ment. Finally, an autocatalytic set (or RAF set) is defined
as a subsetR′ ⊆ R of reactions (and associated molecule
types) which is:

1. Reflexively Autocatalytic (RA): each reaction r ∈ R′
is catalyzed by at least one molecule type involved in
R′, and

2. Food-generated (F): all reactants inR′ can be
created from the food set F by using a series of
reactions only fromR′ itself.

This definition captures the notion of a functionally
closed (RA) and self-sustaining (F) reaction network. A
formal mathematical definition of RAF sets is provided
in [25,27], including an algorithm for finding RAF sets in
a general CRS. This algorithm has a worst-case running
time ofO(|R|2 log |R|), i.e., it is efficient (polynomial in the
size of the full reaction network). In previous work, we
have applied the RAF algorithm to random reaction net-
works with up to several millions of reactions, on which
the average running time was sub-quadratic [25].
A CRS may not contain any RAF, but when it does it

always contains a unique maximal RAF (maxRAF), and
this maxRAF is the one the RAF algorithm finds. More-
over, it has been shown that a maxRAF can often be
decomposed into several smaller subsets which them-
selves are RAF sets (subRAFs) [28]. If such a subRAF
cannot be reduced any further without losing the RAF
property, it is referred to as an irreducible RAF (irrRAF).
The existence of multiple autocatalytic subsets can actu-
ally give rise to an evolutionary process [5], and the emer-
gence of larger and larger autocatalytic sets over time [28].
In this paper we will also consider a more restrictive type
of autocatalytic set called a “constructible” autocatalytic
set (CAF set) [29]. This is an RAF set can be dynami-
cally realized without any of its reactions having to happen
“spontaneously” (uncatalyzed) initially to get all catalysts
present in the system.
A simple example of a CRS and its RAF (sub)sets,

using the well-known binary polymer model, is given in
Figure 1. In the binary polymer model [3,4], molecules are
represented by bit strings up to a given length n, and the
possible reactions are ligation and cleavage. In a ligation
reaction, two bit strings are “glued” together into a longer
bit string, e.g., 00 + 111 → 00111. In a cleavage reac-
tion, a bit string is “cut” into two smaller substrings, e.g.,
101010 → 1010 + 10. Finally, the bit strings are assigned
randomly as catalysts to the possible reactions according
to a given probability of catalysis p (which is the prob-
ability that an arbitrary bit string catalyzes an arbitrary
reaction).
Figure 1(a) shows an instance of the binary polymer

model with n = 5, p = 0.0045, and a food set consisting
of all bit strings of length one and two. Only the catalyzed
reactions (12 in total) are shown. Black dots indicate
molecule types (not labeled), and white boxes indicate
reactions. Solid black arrows indicate molecules going
into and coming out of reactions, and dashed grey arrows



Sousa et al. Journal of Systems Chemistry  (2015) 6:4 Page 3 of 21

(a) (b)
Figure 1 An example CRS and its (sub)RAFs. (a) An instance of the binary polymer model (catalyzed reactions only). Black dots (on the outside,
around a circle) indicate molecule types (not labeled), and white boxes (inside the circle) indicate reactions. Solid black arrows indicate molecules
going into and coming out of reactions, and dashed grey arrows indicate catalysis. (b) The maxRAF as found by applying the RAF algorithm to the
CRS in (a). This maxRAF contains an irreducible RAF of two reactions (indicated by the bold arrows). The food set consists of the bit strings of length
one and two.

indicate catalysis. Applying the RAF algorithm to this CRS
results in the maxRAF shown in Figure 1(b), which con-
sists of five reactions. Furthermore, the maxRAF contains
an irreducible RAF of two reactions (indicated by the bold
arrows). Note that neither the maxRAF nor this irrRAF is
a CAF, as one of the two reactions in the irrRAF needs to
happen spontaneously initially before the full RAF set can
be realized dynamically.
Using the binary polymer model, it was shown that

RAF sets are highly likely to exist, even for very mod-
erate levels of catalysis (between one and two reactions
catalyzed per molecule, on average) [25,26,29,30]. More-
over, this result still holds under variousmodel extensions,
such as a more realistic “template-based” form of catalysis
[27,31,32], a power law distribution of catalysis [33], and
even non-polymer systems [34].
In [28] it was shown that, in principle, there can be

an exponentially large number of irrRAFs within a given
maxRAF. So, there is no hope of efficiently enumerating all
irrRAFs within an arbitrary RAF set. Furthermore, in [35]
it was shown that even finding the smallest irrRAF is NP-
complete. However, the RAF algorithm can be extended
to provide a method to randomly sample irrRAFs from a
given RAF setR′, as follows [35]:
irrRAF sampling algorithm

1. Randomly reorder the list of reactions contained in
R′.

2. For each next reaction ri ∈ R′ do:

(a) Remove ri fromR′.

(b) Apply the RAF algorithm toR′.
(c) If the resulting (maximal) RAF setR′′ is

non-empty, setR′ = R′′, otherwise return ri
toR′.

3. Return the irreducible RAF setR′.

Sampling irrRAFs, and also keeping track of the sizes of
the intermediate subRAFs while iterating step 2, can pro-
vide useful insight into the modularity of RAF sets, as we
show in our results below.
Finally, real autocatalytic sets have actually been con-

structed in laboratory experiments [6-10]. Recently it was
shown that the formal RAF framework can be directly
applied to such real chemical systems, not only reproduc-
ing the experimental results, but also providing predic-
tions about the system’s behavior that would be difficult
to obtain from the chemical experiments alone [36]. How-
ever, these examples, although real, have all been carefully
designed and created in controlled experiments. Here, we
take a first step at applying the formal RAF framework to
a biological CRS: the metabolic network of E. coli.

Themetabolic network of E. coli
All reactions, their functional annotation, and informa-
tion about the gene product(s) that catalyze them, were
retrieved from the most recent E. coli metabolic net-
work data set [12]. Each E. coli gene was parsed with
the UNIPROT information available on 6 March 2013
regarding the type of metals and cofactors [37].
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For the purpose of identifying RAF sets within the E.
coli metabolic network, the following transformations of
the metabolic network were performed: i) Transport reac-
tions and reactions localized within the E. coli periplasm
(except those involved in oxidative phosphorylation) are
removed from the network, and the affected molecules
are included in the food set. Thus, molecules taken in
from the environment (indicated as “xxx[e]” in the orig-
inal data set) are directly available as food molecules; ii)
In reactions catalyzed by a protein that uses a cofactor
or metals, these cofactors and metals are assigned as the
catalysts for that reaction. This has the effect of integrat-
ing organic cofactors into the reaction network. All metals
are included in the food set (unless they are organized as
FeS clusters, in which case they are treated as synthesized
organic cofactors); iii) Reactions catalyzed by a protein
that has no known or annotated cofactor are defined
as being catalyzed by a general catalyst called “Protein”,
which is included in the food set. In case of RNA-
dependent reactions, a generic “RNA” catalyst was intro-
duced that also belongs to the food set. This has the effect
of keeping cofactor-independent reactions within the set
of catalyzed reactions. Moreover, by grouping these reac-
tions with the same generic catalyst (Protein or RNA), we
are simplifying the network’s catalyst space without los-
ing biological information. iv) Reactions for which the E.
coli enzyme is unknown were assigned to another gen-
eral catalyst called “genCat”, which is also included in the
food set, to resolve incomplete data; v) Groups of catalysts
with common properties and common biosynthetic path-
ways, such as menaquinone/ubiquinone, NAD/NADP, or
flavins, are grouped together into a “pool” of equivalent
catalysts (see Table 1); vi) Bi-directional reactions are
split up into two separate reactions, one forward and one
reverse, but catalyzed by the same catalyst. This does not
affect the network structure in any way, but in some cases
makes it more amenable to the RAF analysis; vii) If a reac-
tion requires more than one catalytic molecule and all
catalysts need to be present simultaneously, an additional
reaction is included that creates a “catalyst compound”
from these individual catalysts, which then catalyzes the
given reaction. The reaction that creates such a com-
pound is catalyzed by a general catalyst called “X”. These
reactions are annotated as Catalyst reactions and do not
exist in E. coli’s biological metabolic network. This has
the effect of allowing several cofactors to be required for
a reaction to take place. This transformation is required
for the RAF algorithm to work without changing the bio-
logical aspect of the network; viii) All reactions where
cofactors (e.g., quinones, metals, FAD) were required by
a component of the enzyme, whether involved in cataly-
sis or not, have these cofactors in their required catalyst
list. This has the effect of making the reactions depen-
dent on molecules like quinones; ix) If a reaction can be

Table 1 The different catalyst pools

Cofactor Abbreviation/Group

Thiamine pyrophosphate/Thiamin Thiamin

NAD+/NADH; NADP+/NADPH nad-pool

Pyridoxal phosphate pydx5p

Pyridoxal pydx

Lipoamide lipoamp

Methylcobalamin/Cobalamin Cob

Coenzyme A and derivates coa

Tetrahydrofolic acid and derivates folate

Menaquinone/Ubiquinone Q

Pyrroloquinoline quinone PQQ

Topaquinone topaquinone

FMN/FMNH2 and FAD/FADH2 and Riboflavin Flavins

Glutathione oxidized and reduced Glutathione

S-Adenosyl methionine SAM

Siroheme sheme

Heme B/Heme O Heme

Heme D HemeD

All tRNA RNA

Molybdopterin Molybdopterin

4Fe-4S; 2Fe-2S; 3Fe-4S Iron-Sulfur-cluster

Divalent-cations Divalent-cations

independently catalyzed by two or more proteins, all pos-
sible pairs “reactions:catalyst” are included, each instance
being catalyzed by the cofactors present in the respec-
tive protein; x) When the type of metal was not specified,
we assumed that any of the divalent-metal ions could cat-
alyze the reaction, and a pool of divalent metal ions is
included in the food set. This allows plasticity and mimics
biological enzymes.
Finally, xi) reactions annotated in [12] as uncatalyzed

were assigned a general catalyst called “spont” (included
in the food set). We thus assume that these reactions
still happen at a high enough rate to be considered
relevant. This approximation might seem counter intu-
itive since in the strict formalism of RAFs, uncatalyzed
reactions are outlawed. However, within a cell, several
uncatalyzed reactions do occur, at rates high enough
not to impair its metabolic function. Prevailing uncat-
alyzed reactions within autocatalytic sets tend to give
rise to molecules that are not members of the set itself
but can be incorporated into it, allowing the evolution
of new autocatalytic sets [4,38]. Thus, uncatalyzed bio-
logical reactions are processes that introduce chemical
species (or increase their availability) in the cell’s envi-
ronment. In practical terms, and since the generic cat-
alysts are part of the food set, including spontaneous
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reactions in the network by the insertion of the generic
catalyst “spont“ is similar to the introduction of the prod-
ucts of these reactions in the food set itself, as long as
their substrates are available. In reality, and excluding
the cases were energy coupling exists (e.g. electron bifur-
cation [39] or Q-cycle [40]) catalyzed reactions are no
more than spontaneous uncatalyzed reactions whose acti-
vation energy is lowered by the action of a catalyst. In
the scenario of early evolution, the primordial reactions
would have occurred spontaneously with the help of metal
ions and simple abiotic cofactors, with protein depen-
dent catalytic reactions appearing later as add-ons [41].
However, the removal of this generic catalyst does not
have high impact on the size of the E. coli metabolic RAF
(see below).
The initial food set thus consists of all molecules

exchanged with the environment. This includes the 324
molecule types labeled as “xxx[e]” in the original data
set, plus the ones produced in the periplasm, the intro-
duced general catalysts, and a few essential species such
as ATP, to make a total of 438 food molecules. The result-
ing reaction network, consists of 1199 distinct molecules
types (including the 438 food molecules), 1826 reactions
(belonging to 33 different functional categories) and 42
catalysts. We then applied the RAF framework to analyze
this CRS for the existence and structure of autocatalytic
sets.
A second food set was created based on the labora-

tory conditions given for E. coli growth on glucose-6-
phosphate and glucose as in [42]. The reactions included
in the resulting RAF network were mapped to E. coli Kegg
pathways [43]. Hierarchical clustering and plotting of this
network were performed in MATLAB.

Results and discussion
RAF sets in the metabolic network of E. coli
Applying the RAF algorithm to the E. coli metabolic net-
work results in a maximal RAF set (maxRAF) consisting
of 1787 reactions. This corresponds to 98% of the full
1826-reaction metabolic network, that is, only 39 reac-
tions of the full network are not part of the maxRAF.
When ATP or an equivalent compound such as ADP is
available in this food set, the resulting RAF set is also a so-
called “constructible” autocatalytic set (CAF set). This is
in agreement with previous results from [11] where ATP
was identified as an obligate autocatalytic metabolite in all
metabolic networks studied.
An outline of the number of reactions per functional

category in the maxRAF is presented in Table 2, where
it can be seen that all the major functional categories,
such as amino acid biosynthesis, carbon metabolism,
and cofactor and prosthetic group biosynthesis, are
represented within the RAF set.

Table 2 The number of reactions in themaxRAF set
belonging to each functional category

Functional category Reactions

Alanine and Aspartate Metabolism 11

Alternate Carbon Metabolism 217

Anaplerotic Reactions 11

Arginine and Proline Metabolism 45

Cell Envelope Biosynthesis 135

Citric Acid Cycle 23

Cofactor and Prosthetic Group Biosynthesis 235

Cysteine Metabolism 13

Folate Metabolism 11

Glutamate Metabolism 6

Glycerophospholipid Metabolism 150

Glycine and Serine Metabolism 17

Glycolysis/Gluconeogenesis 34

Glyoxylate Metabolism 4

Histidine Metabolism 12

Inorganic Ion Metabolism 32

Lipopolysaccharide Biosynthesis / Recycling 39

Membrane Lipid Metabolism 78

Methionine Metabolism 16

Methylglyoxal Metabolism 10

Murein Recycling 20

Nitrogen Metabolism 13

Nucleotide Salvage Pathway 173

Oxidative Phosphorylation 65

Pentose Phosphate Pathway 19

Purine and Pyrimidine Biosynthesis 35

Pyruvate Metabolism 23

Threonine and Lysine Metabolism 25

Tyrosine, Tryptophan, and Phenylalanine Metabolism 29

Unassigned 21

Valine, Leucine, and Isoleucine Metabolism 23

tRNA Charging 23

Catalysts Reaction 219

Total 1787

Minimum food set
A crucial determinant for the existence (and size) of RAF
sets is the composition of the food set. As described
above, the initial food set for the E. coli metabolic
network consists of 438 molecule types, 324 of these
being chemical species that are exchanged with the envi-
ronment in [12]. A large redundancy is found within
this last group, namely in terms of redox state of
the uptaken metals or interconvertible chemical pairs
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(e.g. N-acetyl-D-galactosamine and N-acetyl-D-galacto-
samine 1-phosphate). Nevertheless, they provide a good
starting point for this analysis. The additional molecules
of the food set are those produced in the periplasm, the
introduced general catalysts, and a few essential molecules
such as ATP. Although ATP is produced by the reac-
tion system, it needs to be part of the food set, because
otherwise the reaction system does not move forward ini-
tially. This role of ATP in biological networks has already
been pointed out in [11] where it was shown that regard-
less of the initial food set, ATP or equivalent compounds
participating in the same autocatalytic cycle are oblig-
atory autocatalytic metabolites. In the context of early
evolution, this can be seen as a requirement for favor-
able thermodynamics in spontaneous chemical evolution
[44-46].
However, this initial food set can be reduced without

diminishing the size of the maximal RAF set. Out of the
438 initial food molecules, there are 117 “essential” ones:
removing any one of these individually reduces the size of
the maximal RAF set. In the majority of cases (103) the
RAF set is reduced by less than 30 reactions, but there are
7 molecules that reduce the size of the RAF set by more
than 1000 reactions when removed from the food set, in
particular the generic catalysts.
Removing the remaining 321 molecules from the food

set, i.e., using only the 117 essential food molecules, also
results in a reduced maxRAF. So, at least some subset
of these 321 molecules needs to remain in the food set
to maintain the maxRAF. This brings up the question of
whether it is possible to (efficiently) find a minimum food
set that maintains a given RAF set in a reaction network.
Unfortunately, this problem turns out to be NP-complete,
as the following theorem states.
Consider the following combinatorial optimization

problems.

min-F RAF:

INSTANCE: A CRSQ = (X,R,C), and food set F ⊆ X,
with R′ ⊆ R an RAF for (Q, F), and a positive integer
k.
QUESTION: Is there a subset F ′ of F of size at most k
for whichR′ is an RAF for (Q, F ′)?

min-F generation:

INSTANCE: A set of reactions R′ that is F−generated,
and a positive integer k.
QUESTION: Is there a subset F ′ of F of size at most k
for whichR′ is F ′−generated?

Recall that F−generated means that each reactant inR′
is either present in F or can be created from F by using a
series of reactions only fromR′ itself.

Theorem 1. The min-F RAF and min-F generation prob-
lems are NP-complete.

Proof. See the Appendix.

This seems a rather technical result, but it implies that
there is no hope of constructing an efficient (polynomial-
time) algorithm for finding a minimum food set to main-
tain the same maxRAF set. This, therefore, presents a
limit to our ability to study a given reaction network
analytically.
However, we can still take a heuristic approach and

construct a randomized search algorithm to sample food
subsets, and then take the smallest set from the resulting
samples as an approximate solution to the min-F problem.
This randomized algorithm is similar to that for sampling
irreducible RAF sets as described in section “Autocat-
alytic sets”, and analogous to the method used in [47] to
find minimal metabolic networks.

min-F search algorithm

1. Randomly reorder the list of molecule types the
original food set F .

2. For each next element fi ∈ F do:

(a) Remove fi from F .
(b) Apply the RAF algorithm.
(c) If the resulting (maximal) RAF set is smaller

than before, return fi to F , otherwise leave it
out.

3. Return the (reduced) food set F .

Repeating this algorithm any number of times on the E.
coli data set always returns the same smallest size for the
food set of 123 molecules. This includes the 117 essential
molecules, plus some combination of six molecule types
from the remaining 321 compounds. This combination of
sixmolecule types is not always the same, though, but they
do come from a very small subset. Table 3 shows an exam-
ple of ten possible combinations found by our randomized
search algorithm.
Table 3 reveals the presence of groups of molecules such

as adocbl (adenosyl-cobalamin) and cbl1 (cobalamin),
or atp/adp/gtp. These grouped molecules correspond to
equivalent metabolites in the sense that they can break
down the same autocatalytic cycle [11] and the presence
of any molecule from each of these groups in the food set
is sufficient to maintain the original maxRAF. Thus, even
though the general problem of finding the minimum food
set is NP-complete, in case of the E. coli network it seems
very likely that the minimum food set is of size 123, but
that it is not unique.
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Table 3 Ten different combinations of the additional six foodmolecules necessary tomaintain themaximal RAF set

Molecule 1 2 3 4 5 6 7 8 9 10

ATP x x

Cob(I)alamin x x

fructoselysine x x x x x x

D-Fructuronate x x x x

D-Gluconate x x x

SO2 x x x x x x

Adenosylcobalamin x x x x x x x x

ADP x x x x

D-Glucuronate x x x x x x

L-Idonate x x x x x x

GTP x x x x

H2O2 x x x

psicoselysine x x x x

O2 x

5-Dehydro-D-gluconate x

With such a minimum food set, however, the maxRAF
set is not “constructible” anymore (it would need to have
some catalyst-requiring reactions occurring without cata-
lyst to begin with untill all catalysts have been generated),
although there is still a CAF subset of 434 reactions within
the maximal RAF. For the remainder of our analysis, we
use the essential 117 molecules plus the first set of six
additionalmolecules fromTable 3 as the (minimum) food set.
This large number of “essential” molecules in the

food set is to some extent an artifact arisen from
how the initial metabolic network was constructed [12]
and from the condition we imposed that the size of
the maximal RAF should not be reduced. Most of
the essential food molecules correspond to specifica-
tions of generic compounds involved in the periph-
eral glycerophospholipid metabolism (seven derivatives
each of 2-acyl-sn-glycero-3-phosphoethanolamine, 2-
acyl-sn-glycero-3-phosphoglycerol and enoyl-sn-glycerol
3-phosphate), post-translationally modified amino acids
or configurations of usually rare biological isomers that
participate in few reactions (five post-translationally mod-
ified amino acids, one D-aminoacid, five L-sugars and
D- and L-tartaric acid). In all of these cases, no reac-
tion(s) exist for their synthesis in the network although
they participate as substrates. For the same reason, addi-
tional molecules such as lipoate, dopamine, ferric 2,3-
dihydroxybenzoylserine or Fe(III) hydroxamic acid, also
need to be included in the food set as essential molecules.
Another factor contributing to the large number of food

molecules are environmental adaptations of E. coli. As
recently summarized by Mackie et al. [42] E. coli can grow
under different conditions, for example, under aerobic and
anaerobic conditions, or using different carbon sources.

The extended food set allows for all of these alternative
pathways to be functioning within the RAF network. This
raises the question of why to use E. coli as a model organ-
ism for probing questions regarding self-organization of
primordial metabolism. The reason is simple: even though
other metabolic networks exist [48,49], E. coli’s is the best
studied and annotated biological network available, even
if not perfect (see Conclusions). Finally, five generic cata-
lysts contribute to the large number of food set molecules.
These are artificial constructs within the network and
both their impact and biological significance within the
RAF differ (see below). Additional molecules such as thi-
amin also needed to be included in the food set as essen-
tial molecules, although within the metabolic network,
reactions for thiamin synthesis do exist. This apparently
counterintuitive measure has two reasons. First, our net-
work does not contain any biosynthetic route for the syn-
thesis of 4-methyl-5-(2-hydroxyethyl)-thiazole, a thiamin
precursor involved in the pyrimidine branch of thiamin
biosynthesis. Second, even if this molecule is included
in the food set, the double autocatalytic nature of the
thiazole branch of thiamin biosynthesis in E. coli would
prevent these reactions to be included in the RAF set.
Briefly, the enzymes involved in the biosynthesis of thi-
amin are dependent, among other cofactors, on PLP [50]
and thiamin itself [51]. On the other hand, the biosyn-
thesis of PLP, besides being PLP dependent [52], has one
step that is thiamin dependent [51]. Thus, in order to
include these reactions within the RAF system, several
reactions would have to proceed uncatalyzed or one of
the cofactors would have to be present in the food-set.
This atributte suggests that at the origin of life, some
forms of the cofactors existed, hence were synthesized
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spontaneously, before their biosynthetic pathway arose.
The remaining essential molecules of this food set, consist
mainly of 20 different metals, nine inorganic compounds
including gases, 28 distinct carbon and sulphur sources,
and ATP. The full list of this food set is presented in the
Additional file 1.

The role of catalysts
Out of the 1199 molecule types in the network, only 42
(3.5%) act as catalysts, either by themselves or as part of
a catalyst compound. Thus, in the E. coli metabolic net-
work, most molecules do not catalyze any reactions at
all, some catalyze a few reactions, and there are a few
molecules that catalyze many reactions.
Table 4 lists all 42 catalysts, ordered by the number of

reactions they catalyze (“cat”; these include reactions they
catalyze as part of a composite catalyst). The table also
shows by how many reactions the maxRAF is reduced if
each of these 42 catalysts is removed individually from the
network (labeled as “rem”). As expected, the generic cat-
alysts “Protein” and “X” affect the RAF set by reducing
its size drastically. This is because of the large number
of reactions they catalyze (as with “Protein”), or because
all reactions catalyzed by them produce other catalysts
or groups of catalysts essential for other reactions in the

RAF set (as with “X”). In the current E. coli RAF network,
at least 65% of the reactions are catalyzed by a cofactor
and this number would be larger were complete annota-
tions for the genes available (see Conclusions). So, even
with a possible bias toward Protein catalyzed reactions,
that participate and/or connect different metabolic path-
ways, we still recall the importance of cofactors within this
metabolism. In contrast, the removal of the generic cata-
lyst introduced to allow for uncatalyzed reactions (spont)
does not have a significant impact on the size of the E. coli
metabolic RAF.
When some catalysts that participate in only a few reac-

tions are removed from the network, a large decrease
in the size of the RAF can be observed. For example,
5-phosphoribosyl diphosphate (PRPP) is only a catalyst
in the conversion of uracil to UMP (and is a substrate
in only 13 reactions), but the removal of this conver-
sion reaction reduces the RAF size by 1377 reactions,
even though UMP can be produced by seven other dis-
tinct reactions. This shows the central role of PRPP in
biological networks. In E. coli, PRPP is involved in many
metabolic pathways being the precursor of histidine and
NADH. Within this food set, the only possible route for
the de novo synthesis of NADH depends on a reaction
where PRPP reacts with quinolinate to form nicotinate

Table 4 The 42 catalysts ordered by the number of reactions they catalyze (cat), also indicating by howmany reactions
the RAF set is reduced when each catalyst is removed from the network (rem)

cat rem cat rem

Protein 582 1644 pyruvate 9 630

nad-pool 298 1353 Calcium 9 31

X 185 1642 Cob 6 15

Magnesium 142 1476 Copper 5 31

flavin 139 1353 Nickel 5 11

coa 103 619 sheme 5 7

pydx5p 90 1353 lipoamp 4 8

Iron-Sulfur-cluster 86 1353 Potassium 3 166

Zinc 81 1432 topaquinone 3 5

Divalent-cations 78 1413 Molybdenium 10 18

Q 60 98 pan4p 2 625

Iron 55 1353 dpcoa 2 621

Manganese 29 145 Glutathione 2 30

Molybdopterin 28 67 Tungsten 2 11

SAM 27 159 hemeD 2 5

folate 24 682 PQQ 2 5

genCat 23 1367 pydx 2 4

RNA 21 96 prpp 1 1377

heme 18 31 HCO3 1 174

Thiamin 17 1378 Sodium 1 4

spont 17 42 Chloride 1 2
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D-ribonucleotide. Thus, without PRPP there is no NADH
synthesis and the network falls apart.
The extensive biological action of the different cofactors

can be observed by the uneven distribution of the catalysts
according to their functional annotations, see Figure 2.

Modularity in the RAF set
The maxRAF contains 98% of the reactions in the E. coli
metabolic network. An obvious question arises: “Is there
any modularity in this RAF set?”
First, we looked at hierarchical levels of reactions. Start-

ing with the full maxRAF and only the food molecules, we
considered all reactions that can proceed catalyzed, i.e.,
all reactions in the maxRAF that have all their reactants

and at least one of their catalysts in the molecule set. This
represents the “level 0” reactions. Next we added all the
products of these level 0 reactions to the molecule set, and
considered all additional reactions that then proceed cat-
alyzed. This represents level 1 (all reactions one reaction
step away from the food set). We repeated this procedure
for subsequent levels, until the number of reactions that
can proceed catalyzed does not further increase. In short,
a reaction in level i is i reaction steps away from the food
set. Since the maxRAF (with the minimum food set) is not
a CAF, obviously there will be some reactions that are not
in any of these levels. These are the “non-CAF” reactions.
Applying this analysis to the E. colimaxRAF results in a

number of reactions in each level as shown in Table 5. The

Figure 2 Distribution of the catalysts over the different functional categories. The participation of each one of the catalysts (rows) over the
different functional categories (columns) is represented by a red dot.
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Table 5 The number of reactions in each hierarchical level
in themaxRAF of E. coli

level: 0 1 2 3 4 5 6 7

reacs: 63 82 102 77 49 16 16 11

level: 8 9 10 11 12 13 14 non-CAF

reacs: 7 5 2 1 1 1 1 1353

reactions in levels 0 to 14, taken together, constitute the
434-reaction CAF subset that exists within the maxRAF
(as mentioned above). However, most reactions are in the
non-CAF level, i.e., at least some of them will need to hap-
pen spontaneously (uncatalyzed) at least once before the
full maxRAF can come into existence in a dynamical sense
(i.e. before all catalyst are present in the system).
Finding a minimum subset of reactions that, when

allowed to proceed uncatalyzed at least once, realizes the
full maxRAF turns out to be an NP-hard problem [32] (in
fact, even just finding the size of such a smallest subset
is NP-hard). Therefore, determining the distance (num-
ber of reaction steps) from the food set of these non-CAF
reactions appears to be intractable.
Another way of looking for modularity in an RAF set is

as follows. First, construct a “connectivity graph” G were
each node in G corresponds to a reaction in the maxRAF.
Next, link reaction ri to reaction rj if a product of ri is
either a reactant or a catalyst of rj transforming G in a
directed graph. The strongly connected components of this
digraph can now be computed.
Constructing G and computing its strongly connected

components for the RAF set in the E. coli metabolic net-
work results in 93 such components. However, 87 of these

are of size one, five are of size two, and one is of size
1690. This indicates that the maxRAF mostly consists
of one large connected component showing, as previ-
ously pointed out by [11,13], the auto- and cross-catalytic
behavior of metabolic networks.

The effect of removing reactions
Recall that an irreducible RAF set (irrRAF) is an RAF set
from which no reactions can be removed without losing
the RAF property. Applying the irrRAF sampling algo-
rithm (as described in section “Autocatalytic sets”) to
the maxRAF in the E. coli metabolic network (using the
minimum food set) always results in an irrRAF of size one.
This is not surprising, as our hierarchical levels analysis
above resulted in 63 reactions in level 0. Since all of these
reactions have their reactants and at least one catalyst in
the food set, they are by definition RAF sets by them-
selves (and, consequently, also irrRAFs, as they are of size
one). We refer to these as “trivial” (irr)RAFs. Removing
these trivial irrRAFs from the network, however, breaks
the original maxRAF, as the resulting RAF set now con-
tains only 17 reactions (with irrRAFs of sizes two and
three). So, the “trivial” RAFs are also “essential” for the full
maxRAF.
It is still informative, however, to apply the irrRAF sam-

pling algorithm and see how the size of the RAF set
is reduced with each (potential) removal of a reaction.
Figure 3 shows the sizes of the intermediate RAF sets
while iterating the sampling algorithm, for ten repetitions
of the method. In most cases, the removal of a reaction
reduces the RAF size by only a very small amount and only
in few cases this removal results in a significant reduction
in the RAF size. For each reaction that reduces the RAF

Figure 3 Ten sequences of repeatedly and randomly removing reactions. Thin lines represent the impact of randomly removing a reaction in
the RAF size. Each line decrease correspond to the removal of a single reaction from the network.
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Figure 4 Functional effect of the removed reactions that decrease the RAF-size by more than 100. There were 13 reactions involving the
synthesis of composite cofactors that reduced the RAF size by more than 100 reactions that are not shown in the Figure. These reactions often
comprised the coupling of, for example, folate and magnesium, or thiamine and magnesium, i.e., reactions in which more than one cofactor was
required. They were removed from the list so that only E. coli reactions and not those generated by recoding of the data are represented. An
additional seven reactions in the list that resulted solely from the use of different designations for the same compound in the E. colimetabolic
network and the E. coli Uniprot database were also excluded.
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Table 6 Functional categories of the reactions affecting RAF size bymore than 100 (“decr”)

ID Functional annotation Reaction Decr

889 Murein Recycling LalaDgluMdap + h2o → 26dap-M + LalaDglu 1389

200 Murein Recycling LalaDglu → LalaLglu 1386

892 Murein Recycling LalaLglu + h2o → ala-L + glu-L 1384

713 Glutamate Metabolism atp + glu-L + nh4 → adp + pi + h + gln-L 1371

421 Cofactor and Prosthetic Group Biosynthesis ru5p-D → db4p + h + for 1360

501 Cofactor and Prosthetic Group Biosynthesis g3p + h + pyr → co2 + dxyl5p 1354

274 Cofactor and Prosthetic Group Biosynthesis 5apru + h + nadph → 5aprbu + nadp 1353

303 Alanine and Aspartate Metabolism glu-L + oaa → akg + asp-L 1353

464 Cofactor and Prosthetic Group Biosynthesis 25drapp + h + h2o → 5apru + nh4 1353

503 Cofactor and Prosthetic Group Biosynthesis e4p + h2o + nad → 4per + h + h + nadh 1353

629 Cofactor and Prosthetic Group Biosynthesis atp + fmn + h → fad + ppi 1353

697 Nucleotide Salvage Pathway atp + gmp → adp + gdp 1353

749 Purine and Pyrimidine Biosynthesis atp + gln-L + h2o + xmp → amp + ppi + h + h + gmp + glu-L 1353

769 Cofactor and Prosthetic Group Biosynthesis gtp + h2o + h2o + h2o → 25drapp + ppi + h + h + for 1353

1039 Cofactor and Prosthetic Group Biosynthesis atp + nad → adp + nadp + h 1353

1045 Cofactor and Prosthetic Group Biosynthesis atp + dnad + nh4 → amp + ppi + nad + h 1353

1086 Nucleotide Salvage Pathway atp + h + nicrnt → dnad + ppi 1353

1089 Cofactor and Prosthetic Group Biosynthesis h + h + prpp + quln → co2 + ppi + nicrnt 1353

1141 Cofactor and Prosthetic Group Biosynthesis glu-L + ohpb → akg + phthr 1353

1183 Cofactor and Prosthetic Group Biosynthesis dxyl5p + nad + phthr → co2 + pi + pdx5p + nadh + h2o + h2o + h 1353

1185 Cofactor and Prosthetic Group Biosynthesis 4per + nad → h + nadh + ohpb 1353

1225 Cofactor and Prosthetic Group Biosynthesis 5aprbu + h2o → 4r5au + pi 1353

1326 Cofactor and Prosthetic Group Biosynthesis dhap + iasp → h2o + quln + pi + h2o 1353

1330 Cofactor and Prosthetic Group Biosynthesis atp + ribflv → adp + h + fmn 1353

1331 Cofactor and Prosthetic Group Biosynthesis 4r5au + db4p → dmlz + pi + h2o + h2o 1353

1332 Cofactor and Prosthetic Group Biosynthesis dmlz + dmlz → 4r5au + ribflv 1353

462 Purine and Pyrimidine Biosynthesis cbasp + h → dhor-S + h2o 752

460 Purine and Pyrimidine Biosynthesis dhor-S + fum → orot + succ 750

1160 Purine and Pyrimidine Biosynthesis orot + prpp → orot5p + ppi 749

1148 Purine and Pyrimidine Biosynthesis h + orot5p → co2 + ump 747

473 Tyrosine, Tryptophan, and Phenylalanine Metabolism 2dda7p → 3dhq + pi 726

768 Cofactor and Prosthetic Group Biosynthesis gtp + h2o → ahdt + h + for 724

474 Tyrosine, Tryptophan, and Phenylalanine Metabolism 3dhq → 3dhsk + h2o 723

1404 Tyrosine, Tryptophan, and Phenylalanine Metabolism 3dhsk + h + nadph → nadp + skm 722

1406 Tyrosine, Tryptophan, and Phenylalanine Metabolism atp + skm → adp + skm5p + h 720

1274 Tyrosine, Tryptophan, and Phenylalanine Metabolism pep + skm5p → 3psme + pi 719

350 Tyrosine, Tryptophan, and Phenylalanine Metabolism 3psme → chor + pi 717

1512 Nucleotide Salvage Pathway atp + ump → adp + udp 709

484 Cofactor and Prosthetic Group Biosynthesis ahdt + h2o → dhpmp + ppi + h 693

483 Cofactor and Prosthetic Group Biosynthesis dhpmp + h2o → dhnpt + pi 692

454 Cofactor and Prosthetic Group Biosynthesis dhnpt → 6hmhpt + gcald 687

1559 Cofactor and Prosthetic Group Biosynthesis chor + gln-L → 4adcho + glu-L 686

150 Cofactor and Prosthetic Group Biosynthesis 4adcho → 4abz + pyr + h 685

824 Cofactor and Prosthetic Group Biosynthesis 6hmhpt + atp → 6hmhptpp + h + amp 685
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Table 6 Functional categories of the reactions affecting RAF size bymore than 100 (“decr”) (Continued)

465 Cofactor and Prosthetic Group Biosynthesis 4abz + 6hmhptpp → dhpt + ppi 684

449 Cofactor and Prosthetic Group Biosynthesis atp + dhpt + glu-L → adp + pi + h + dhf 683

381 Purine and Pyrimidine Biosynthesis atp + gln-L + h2o + utp → adp + pi + h + h + glu-L + ctp 679

447 Cofactor and Prosthetic Group Biosynthesis dhf + h + nadph → nadp + thf 674

114 Valine, Leucine, and Isoleucine Metabolism h + pyr + pyr → alac-S + co2 639

875 Valine, Leucine, and Isoleucine Metabolism alac-S + h + nadph → 23dhmb + nadp 638

436 Valine, Leucine, and Isoleucine Metabolism 23dhmb → 3mob + h2o 636

1017 Cofactor and Prosthetic Group Biosynthesis 3mob + h2o + mlthf → 2dhp + thf 630

292 Cofactor and Prosthetic Group Biosynthesis asp-L + h → ala-B + co2 629

487 Cofactor and Prosthetic Group Biosynthesis 2dhp + h + nadph → nadp + pant-R 629

1169 Cofactor and Prosthetic Group Biosynthesis ala-B + atp + pant-R → amp + ppi + pnto-R + h 628

1228 Cofactor and Prosthetic Group Biosynthesis atp + pnto-R → 4ppan + h + adp 627

1253 Cofactor and Prosthetic Group Biosynthesis 4ppan + ctp + cys-L → 4ppcys + ppi + h + cmp 626

1241 Cofactor and Prosthetic Group Biosynthesis 4ppcys + h → co2 + pan4p 625

1295 Cofactor and Prosthetic Group Biosynthesis atp + h + pan4p → dpcoa + ppi 621

486 Cofactor and Prosthetic Group Biosynthesis atp + dpcoa → adp + h + coa 619

295 Threonine and Lysine Metabolism asp-L + atp → 4pasp + adp 197

286 Threonine and Lysine Metabolism 4pasp + h + nadph → aspsa + nadp + pi 195

831 Threonine and Lysine Metabolism aspsa + h + nadph → hom-L + nadp 187

800 Unassigned co2 + h2o → h + hco3 174

833 Methionine Metabolism hom-L + succoa → coa + suchms 172

1407 Methionine Metabolism cys-L + suchms → cyst-L + succ + h 171

388 Methionine Metabolism cyst-L + h2o → hcys-L + pyr + nh4 170

983 Methionine Metabolism atp + h2o + met-L → amet + ppi + pi 160

105 Membrane Lipid Metabolism accoa + atp + hco3 → adp + pi + malcoa + h 117

971 Membrane Lipid Metabolism ACP + malcoa → coa + malACP 115

500 Cofactor and Prosthetic Group Biosynthesis dxyl5p + h + nadph → 2me4p + nadp 110

982 Cofactor and Prosthetic Group Biosynthesis 2me4p + ctp + h → 4c2me + ppi 109

343 Cofactor and Prosthetic Group Biosynthesis 4c2me + atp → 2p4c2me + h + adp 108

981 Cofactor and Prosthetic Group Biosynthesis 2p4c2me → 2mecdp + cmp 107

980 Cofactor and Prosthetic Group Biosynthesis 2mecdp + flxr + flxr + h → flxso + h2o + h2mb4p + flxso 106

478 Cofactor and Prosthetic Group Biosynthesis dmpp + ipdp → grdp + ppi 101

Chemical species are symbolic represented.

size by more than 100 reactions, the functional categories
affected are given in Figure 4. Table 6 lists the actual reac-
tions themselves, including their function category. The
same pattern shows up formultiple repetitions of the algo-
rithm. However, for readability of Figure 3 we have only
shown the results of ten such runs.
The reactions whose removal reduces the size of

the RAF the most involve nitrogen assimilation, glu-
tamine synthase (GS) and mureine recycling. The lat-
ter seems surprising but is easily explained, because
in the E. coli network we use here [12], a mureine
degradation product (anhgm4p, N-acetyl-D-glucosamine
N-acetylmuramyl-tetrapeptide), originally a periplasmic

product but transferred to the food set (see Experimen-
tal), is one of the food sources of glutamate, the sub-
strate for ammonium incorporation in the GS reaction.
Within this RAF network, the highly dependent cofac-
tor biosynthesis network is initially only operational at
the expenses of glutamate formation from the mureine
degradation pathway. If glutamate (or GS) is removed,
no nitrogen can be incorporated and the reaction net-
work stalls at many reactions, much like the case of ATP
above. Glutamine synthase is the entry point of nitrogen
in E. colimetabolism [53], and without nitrogen, no cofac-
tors, amino acids or bases can be generated, so this result
makes sense.
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Also of interest is the central role that cofactor biosyn-
thesis assumes in the E. coli RAF. Of the 76 reactions that
reduce the size by more that 100 reactions, 43 (57%) fall
in the functional category synthesis of cofactor and pros-
thetic groups. This is intuitively understandable because
cofactors are catalysts. It furthermore underscores the
importance of cofactors as mediators of metabolism
[11,54,55]. Following the cofactors in terms of effect on
the RAF when removed, are amino acids (21), nucleotide
biosynthesis (9), and three others.
Finally, there are clear intermediate levels in the (reduc-

ing) RAF sets. As Figure 3 shows, there are significant
drops in RAF size first to around 1100 reactions and then
to around 400 reactions, which occur in almost all of the
10 runs. Interestingly, all these (roughly) size-400 sub-
sets consist primarily of reactions from the 434-reaction
CAF subset, indicating that this is kinf of “robust” core of
the maxRAF and furthermore indicating the existence of
modularity in the RAF set.

The effects of removingmolecules
The irrRAF search algorithm gives insight into the impor-
tance of individual reactions on the size of the RAF set.
We can perform a similar procedure for the molecules.
Figure 5 shows the reduction in the size of themaxRAF set
(in number of reactions) when an individualmolecule type
is removed from the network (its “importance”), against
the number of reactions this molecule is involved in either
as a reactant, product, or catalyst (its “involvement”), for

all 1199 molecule types. Note that, as with removing
reactions, there is a clear separation into a few different
levels of RAF sizes when removing molecules.
Obviously the molecules that are involved in many reac-

tions (the upper set of points in Figure 5) have a large
importance, that is, they reduce the RAF set by more than
1300 reactions when removed. There are 76 compounds
in this group, including all of the cofactors except folate
and coenzyme A, many amino acids and core carbon
coumponds like ribose-5-phosphate or phosphoenolpyru-
vate (Table 6). Removal of such compounds should have
a large effect. However, there are also many molecules
that have a very low involvement (less than 50 reactions,
except coenzyme A) but a very high importance in that
they reduce the RAF set by more than 600 reactions when
removed. There are 52 compounds in this class, includ-
ing folate, but mostly central metabolites of core biosyn-
thesis. The third group of molecules encompasses 1071
metabolites with both low involvement and low impor-
tance. These might be considered as peripheral in E. coli
metabolism. But if this is the periphery, it would leave
only 128 compounds in the core. This might seem like an
unrealistically small core, but we note that there are only
303 essential genes in E. coli and the metabolic network
model of E. coli needs just 250 genes to be able to produce
biomass [47] (see Conclusions).
After protons (“h” in Figure 5) and the generic cat-

alyst “Protein”, the most frequent participant in an E.
coli reaction is water. The involvement of water in many
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reactions might seem trivial, but water is more central
to metabolism than one might think: 70% of the water
molecules in the cytosol of exponentially growing aerobic
E. coli cultures do not stem from the aqueousmedium, but
they are synthesized through E. colimetabolism [56].

Can real food sets support the RAF structure?
If we set the food set to biologically realistic conditions
where E. coli has been shown to grow, the RAF network
collapses and less than 10% of the reactions are retrieved
(Table 7). This apparently negative result shows that the
introduction of an additional level of regulation (a reac-
tion only occurs if the reaction catalyst is present in the
network) has a massive impact in the way current cells
function. As observed for the RAF network with a food set
of 123 molecules, the catalysts have a different impact in
the size of the RAF (Additional file 1: Table S1). The next
step is to check what needs to be further introduced in
this reduced food set in order for the essential metabolic
pathways such as pentose metabolism, glycolysis, citric
cycle, amino acid and cofactor biosynthesis to become
functional. While finding the minimal food set is an NP-
complete problem, finding a food set that creates a CAF
network comprising those metabolic pathways is possible.
In fact, besides the addition of the obligate autocatalytic
metabolite ATP, using the glucose-6-phosphate food set
with the addition of just seven catalysts (NAD, FAD, PLP,
thiamin, CoA, lipoate and some cobinamine form), a CAF
network with the same size of the resulting RAF set and
containing 1517 reactions is retrieved. Although with this
food set only 85% of the initial network is retrieved,
the main E. coli cytosolic metabolism is still captured
(Table 7). Interestingly, the autocatalytic metabolites that
Szathmary and coworkers found for the E.coli metabolic
network grown in minimum media also included CoA,
NAD and ATP [11]. The difference between their study
and ours is that we also took into consideration the
cofactor dependency of the enzyme catalyzing the reac-
tions. Thus, our list includes FAD, PLP and thiamin as
autocatalytic metabolites due to the existence of several
enzymes that are dependent on these cofactors, it includes
cobalamin that E. coli naturally uptakes from the environ-
ment and also lipoate, whose synthesis is not described
within the network.
However, not all of these 39 food molecules are essential

to maintain a similar RAF size (Table 7) and this solu-
tion is not unique. For instance, the removal of either SO4
or S2O3 has no effect on the size of either the RAF or
the CAF because the presence of one can sustain E. coli’s
growth by providing a sulfur source. A more interesting
result comes from the removal of glucose-6-phosphate
(the only obvious carbon source) from the food set, since
its removal also does not affect the size of the RAF. In
this case, the source of carbon becomes ATP itself, by

Table 7 Impact of removal of molecules from the “real” E.
coli food set in the RAF and CAF size

Foodmolecule RAF size decrease CAF size decrease

Ca2+ 7 7

Cl 2 2

Co2+ 33 33

Cu2+ 27 27

K+ 155 360

Mg2+ 1117 1117

Mn2+ 133 133

MoO2−
4 24 24

Na+ 3 3

Ni2+ 11 11

NO3 3 3

SeO2−
4 6 6

TrimethylamineN − oxide 2 2

S2O
2−
3 0 0

WO2−
4 11 11

Zn2+ 631 631

ATP 1206 1206

O2 47 47

genCat 492 492

Protein 1352 1352

RNA 88 88

spont 41 41

X 1447 1447

Glutathione 30 30

H2O 0 0

Fe2+ 91 91

NH4 0 0

H3PO4 0 0

SO4 0 0

Iron − Sulfur − cluster 0 866

NAD∗ 1261 1261

FAD∗ 0 1162

Glucose − 6 − phosphate 0 0

Pyridoxal5′ − phosphate∗ 0 673

CoA∗ 1099 1099

H2S 0 194

Thiamin∗ 2 417

Adenosylcobinamide∗ 10 10

Lipoate∗ 8 8

*indicates the 7 added molecules.

its conversion into adenosine in the nucleotide salvage
pathway. This captures an aspect of E. coli’s versatility
since E. coli can grow aerobically or anaerobically, both in
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silico and in vivo, using adenosine as the sole carbon and
nitrogen source [57].
To check the modularity of this CAF network in terms

of the metabolic pathways organization, we determined
the hierarchical levels of each reaction, grouped by E.

coli KEGG metabolic pathways. Based on the relationship
between the different E. coli metabolic pathways with the
53 hierarchical levels retrieved, it is possible to represent
the CAF network in a tree-based structure containing sev-
eral grouped pathways (Figure 6). In this representation,

Figure 6 Hierarchical levels of E. coli CAF network using a “real”? Food set. Top- Hierarchical clustering dendrogram of E. colimetabolic
pathways (leafs) according to the hierarchical levels defined in the text. Bottom- Heatmap representing the occurrence of reactions from each one
of metabolic pathways (columns) and the 53 hierarchical levels of the CAF network (rows). Blue squares represent the occurrence of at least one
reaction from that pathway in a given level. Numbers represent grouped pathways. 1- Nucleotide-excision-, mismatch-, and base-excision- repair;
DNA-replication. 2- Glycolysis/gluconeogenesis; methane-, carbon-, amino acids biosynthesis, glycine, serine and threonine- metabolism. 3- Fatty
acid biosynthesis and metabolism; valine, leucine and isoleucine-, geraniol- and fatty-acid- degradation. 4 - Lysine degradation; tryptophan
metabolism; limonene-, caprolactam- degradation; beta-alanine metabolism. 5- Unsaturated fatty-acids biosynthesis, biotin-, propanoate- and
butanoate- metabolism. 6– Glycerophospholipid- and alpha-linolenic acid metabolism; ethylbenzene degradation; pantothenate and CoA
biosynthesis. 7- Purine-, pyrimidine- and porphyrin- metabolism; Valine, leucine and isoleucine biosynthesis. 8- Oxocarboxylic acid metabolism;
phenylalanine, tyrosine and tryptophan biosynthesis. 9- Lipopolysaccharide biosynthesis. 10- Arginine and proline-, amino sugar and nucleotide
sugar-, glycerolipid-, histidine-, glyoxylate- and dicarboxylate metabolism; benzoate degradation; nicotinate-, starch and sucrose metabolism.
11- Quinone biosynthesis; pyruvate-, galactose- metabolism; lysine biosynthesis; PLP metabolism; aminoacyl-tRNA biosynthesis. 12- Cysteine and
methionine metabolism; siderophore-group nonribosomal-peptides biosynthesis; glutathione-, citrate-cycle, sulfur- metabolism. 13- Pentose
phosphate pathway; fructose-, mannose metabolism; pentose and glucuronate interconversions; peptidoglycan- and folate- biosynthesis.
14- Phenylalanine metabolism; novobiocin biosynthesis. 15– Tyrosine-, riboflavin and cyanoamino-acid metabolism; terpenoid-backbone biosynthesis;
Selenocompound metabolism. 16– Thiamine-, Sulfur-relay system, D-Alanine metabolism. 17– Dioxin-, Xylene-, Chloroalkane-, naphthalene-,
aromatic- degradation. 18- C5-Branched dibasic acid-, inositolphosphate-, oxidative phosphorylation, nitrogen-, two-component system, taurine-
metabolism. 19- lipoic acid-, alanine, aspartate, glutamate-, D-glutamine and D-glutamate- metabolism; nitrotoluene degradation; folate one-carbon
pool; ascorbate metabolism. 20- Aminobenzoate degradation; streptomycin-, polyketide-sugar biosynthesis; RNA-, toluene- degradation. 21- Arachidonic
acid metabolism. 22- phosphotransferase system.
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thr reaction network is organized into 53 different lev-
els of iteration, starting from the 39-molecule food set.
Similar patterns of occurrence with increasing distance
from the food set indicate that the molecules and cat-
alysts necessary for each of their reactions arise at the
same iteration. The synthesis of lipopolysaccharide, the
major component of E. coli outer membrane (group 9
in Figure 6) is the last process to be concluded suggest-
ing a high dependency of lipopolysaccharide biosynthesis
on other metabolic pathways and, consequently, its late
emergence during metabolic evolution.

Conclusions
Although autocatalytic networks are found in biological
systems, the systematic impact of including the metal and
cofactor protein dependencies as catalysts in metabolic
networks under the RAF context has not been previously
investigated. The present analyses shows that, within this
framework, the E. coli metabolic network can indeed be
expressed as an RAF set. RAFs also recover the modu-
larity and hierarchical behavior of the E. coli metabolic
network – in particular they underscore the crucial role
of cofactors as the prime mediators of metabolism, a
recurring theme in the study of metabolic architecture
[11,55,58]. Here we have shown the important role of
metals and molecules such as NAD, ATP and CoA in
breaking autocatalytic cycles and sustaining the network
complexity. This result is in agreement with findings of
Heinrich and coworkers [59], who analysed the scopes
of compounds and expansion within KEGG metabolic
networks and showed the crucial role of the inclusion
of these metabolites in the expansion and robustness
increase of metabolic networks. Moreover, by also includ-
ing the metal and cofactor dependencies of the proteins,
we extended this set of compounds by identifying addi-
tional molecules such as thiamin and PLP as autocatalytic
metabolites within E. coli metabolism. Thus, RAFs can
clearly be used to explore the biological importance of
molecules/catalyst within a cell and their interrelation-
ships. But there are caveats.
Among the caveats to the present analyses, the under-

lying databases are not complete. As one example, biotin
does not occur as a cofactor in the present annotations
from the UNIPROT database for E. coli, but it is known
to generally be required in ATP-dependent carboxylation
reactions, for example in that catalyzed by acetyl-CoA
carboxyase [60]. Another caveat is that RAFs exclude,
by definition, a potentially important kind of reaction,
namely spontaneous reactions that have no catalysts
at all. There are a number of important reactions in
biology that are spontaneous. A prime example is the
first step in CO2 assimilation in methanogens, which
involves the spontaneous (non-enzymatic) formation of
N-carboxymethanofuran [61]. In modern environments,

about a billion tons of carbon are processed via this spon-
taneous reaction each year [62] and spontaneous reac-
tions of this type might have been important in early
evolution [55]. For this reason we introduced the catalyst
“spont” for reactions that are annotated as spontaneous,
of which there are 17 in the present analysis (Table 4).
Another caveat is promiscuity (or messiness) in enzyme

function, that is, the inherent ability of enzymes to cat-
alyze several different selectable reactions [63], whereby
usually only one function appears on metabolic maps.
This opens the possibility to have additional parallel reac-
tions catalyzed by different cofactors within the metabolic
network. Early in the evolution of enzymes, that is at the
dawn of protein folds and enzyme families, catalytic speci-
ficity was probably rare. In modern E. coli, the full extent
to which gene products can substitute for each other is
not known, although in one classical study, 620 genes in
E. coli were found to be essential in rich medium (263 of
which had no known function), while 3126 were dispens-
able [64]. A more recent study found that only 303 E. coli
genes were essential (37 of which had no known function),
and 3985 were dispensable [65]. This indicates that there
is a great deal of redundancy and/or environmental speci-
ficity [66] built into E. coli metabolism and that there is
still much to be learned about its map.
Finally, although we can easily find RAFs, including

CAFs and irreducible RAFs, there are also limits to what
can be calculated. For example, we have shown here that
finding the minimal food set needed to maintain a given
RAF is a computationally intractable (NP-complete) prob-
lem in general. So too is finding a smallest irrRAF [35],
but here this seems not interesting as the smallest irrRAF
turn out to be of size one (so-called “trivial” irrRAFs).
Instead, it would be of more interest to find a largest
irrRAF within the E. coli metabolism network. However,
at present it is not clear whether this can be computed
efficiently.

Do these findings bear upon early chemical evolution?
The origin and initial interest in RAFs stem from
early speculation about chemical evolution [4] and the
possibility that autocatalytic sets might have played a
role as a means of self organization en route to higher
complexity prior to the advent of genetically specified
catalysts. One prerequisite for the existence of RAFs
in the real world is of course a set of food molecules
provided by the environment. Another prerequisite is
that the laws of thermodynamics must be obeyed, thus
that the overall reaction needs to release energy. Amend
et al. [45] have examined these two properties in the
context of hydrothermal vents, where organic synthesis
from smaller “food” building blocks is thermodynamically
favored, owing to the exergonic nature of the interac-
tions between H2 and CO2 to yield organic products.



Sousa et al. Journal of Systems Chemistry  (2015) 6:4 Page 18 of 21

Of interest, Kauffman’s speculations entailed the synthe-
sis of large peptides from small ones, and early work
showed that the synthesis of both amino acids and pep-
tides under hydrothermal vent conditions are exergonic
processes [67], whereby a typical microbe is more than
50% protein by weight [68,69].
E. coli is a heterotroph that can live anaerobically but

can also, like human mitochondria, use O2 as the ter-
minal electron acceptor in its ATP-generating electron
transport chain. In that sense the E. coli metabolic net-
work is hardly an ideal model for early chemical evolution.
In addition, during evolution abiotic catalysts and metals
in primordial RAF sets have been replaced by sophisti-
cated chemical catalysts, as studies of metal and cofac-
tor gains and losses across protein families have shown
[70-72]. Comparative genomic analysis of the distribu-
tion of trace elements in current genomes indicate that
the loss of a metal or cofactor is more frequent that
their respective gain [73]. Moreover, phylogenomic anal-
ysis of protein structures also concluded that Fe, Mn,
and Mo were preferentially selected by early life forms
and were replaced or lost during evolution [74], such
that in early chemical evolution, metal dependency was
probably higher. Moreover, throughout evolution, protein
have often been replaced by analogous proteins of simi-
lar or identical functions. The presence across genomes of
metal-independent (class I and Ia) and metal-dependent
(class II) aldolases is just one example [75-77] where, pos-
sibly due to later sugar metabolism adaptations, these
enzymes likely replaced an ancestral bifunctional fructose
1,6-bisphosphate aldolase/phosphatase enzyme involved
in gluconeogenis [78].
Finally, early enzymes probably had a more relaxed

substrate specificity than in modern metabolism. This
reasoning is the basis of “The Game of the Pentose Phos-
phate Cycle” study where Meleindez-Hevia and Isidoro
showed that generic aldolases and ketolases could gener-
ate a large set of sugar phosphate interconversions and the
subsequent growing specificity of the enzymes lead to a
minimal solution, that in fact is equivalent to the naturally
occurring pathway in E. coli to recycle pentoses to hexoses
[79]. Similarly, Noor et al expanded contemporary central
carbon metabolism by assuming a relaxed specificity of
enzymes [80]. With this methodology, they showed that
the central carbon metabolism in E. coli connects input
sugars and the key precursors metabolites essential for
biomass and energy production by the minimal number
of enzymes, suggesting that contemporary metabolism is
a small subset of the original possibilities.
The metabolic network of E. coli represents the result

of billions of years of catalytic refinement through natural
variation and natural selection. However some of the
properties germane to early evolution are common to all
life forms and should still be at least partially conserved

and, it is generally of interest to know whether the best-
studied metabolic system is an RAF. With a few restric-
tions, for example the introduction of generic catalysts
where no cofactors are involved, it indeed is. This is an
encouraging result for future studies on the metabolic
networks of ostensibly more primitive organisms such as
acetogens and methanogens [44,81] whose carbon and
energy metabolism is not only simpler than that of E.
coli, but also more similar to chemistry at hydrother-
mal vents, and whose metabolism furthermore involves a
more prominent role of catalysis by metals [46,82].
The critical role of cofactors in the E. coli RAFs might

point to an interesting aspect of early chemical evolution.
We see here that the size, hence in some respects the com-
plexity, of RAFs within the E. coli metabolic network are
dependent upon cofactors: a small number of catalysts
that promote a large number of reactions each. Regardless
of where life arose, in the very earliest phases of chemical
evolution, there must have been both thermodynamically
controlled reactions (themost stable compounds accumu-
late) and kinetically controlled reactions (the most rapidly
synthesized products accumulate). By lowering the acti-
vation energy of a reaction, cofactors influence the latter
class of reactions more than the former as seen in the
PLP example before mentioned [20]. Hence the sponta-
neous, and perhaps inorganically catalyzed, synthesis of
small amounts of a small number of organic cofactors
at the onset of chemical evolution could have strongly
influenced the nature of compounds that subsequently
accumulated. With the advent of proteins, this principle
might not have been discarded, depending on whether
one interprets the E. coli metabolic map as harboring
some relics from early evolution, or not. In our opinion,
some of these original imprints may still be present in the
metabolism of modern organisms, as seen by their recur-
rent use of the same set of metals and organic cofactors
as catalysts of biologic reactions, a set much smaller than
the number of protein families that have evolved to cat-
alyze them. The directives of the continuity principle in
evolution demand that complex biochemistries had to be
preceded by simpler chemistries. Thus, the initial RAF set
would certainly be much simpler than the one analyzed
in this paper but migth have already manifest the prin-
ciple of cofactor and metal dependencies as recurrently
is observed across studies showing their central role in
modern metabolism [11,59,83].
We have shown that the E. coli reaction network can

produce useful insights into primordial RAFs by identi-
fying the essential role of metals and molecules such as
ATP, CoA or thiamin in metabolism. This suggests the
existence of some sort of abiotic autocatalysis at the onset
of primordial metabolic networks. We have also shown
here that maximal RAFs can be efficiently detected in real
biological data, but the identification of large irreducible



Sousa et al. Journal of Systems Chemistry  (2015) 6:4 Page 19 of 21

RAFs and the minimal food sets required to support a
maximal RAF remain challenging problems.

Appendix
Proof that min-F RAF andmin-F Generation are
NP-complete
First note that both problems are in the complexity class
NP, since we can determine in polynomial time (in the size
of the input) whether a set of reactions is F ′−generated
and/or an RAF, for any given set F ′.
Next, notice that it suffices to show that the simpler

problem ‘min-F generation’ is NP-complete, since for any
instance I of ‘min-F generation’ there is a corresponding
instance I ′ of ‘min-F RAF’ obtained by (i) making every
molecule in X catalyze every reaction inR, and (ii) taking
R = R′ and X to be the molecules in the support of R′;
under this correspondence, I ′ has an affirmative answer if
and only if I does.
We will show that ‘min-F generation’ is NP-complete by

exhibiting a (polynomial-time) reduction from the follow-
ing set-theoretic decision problem.

Exact cover by 3-sets (X3C)

INSTANCE: Finite set Y with |Y | = 3q, q an integer;
collection S of 3-element subset of X.

QUESTION: Does S contain an exact cover for Y ,
i.e., a subcollection S′ of S such that every element of Y
occurs in exactly one member of S′?

The decision problem X3C was one of the early ones
to be shown NP-complete by Karp [84]. We may assume,
without loss of generality, that in X3C every element of Y
occurs in at least one element (3-element subset) of S. As
an example of X3C, consider the set Y = {a, b, c, d, e, f }
and

S = {{a, b, c}, {a, d, e}, {d, e, f }}.
In this case S′ = {{a, b, c}, {d, e, f }} is the (unique) subset

of S that provides an exact 3-cover for Y .
Given an arbitrary instance (Y , S) of X3C, we will con-

struct an associated set R(Y ,S) of reactions. The set of
molecules X involved in these reactions is the (disjoint)
union Y ∪ S ∪ W , where W := {ws : s ∈ S}. Thus
|X| = |Y | + |S| + |W | = 3q+ 2|S|. Moreover, we will take
the food set F to consist of all of X.
We next describe the reactions. First impose an arbi-

trary total order < on Y . Then for each set s = {a, b, c} ∈
S, with a < b < c, consider the set Rs consisting of the
following three reactions:

s → a + b + c

a + b → ws

ws + c → s

Then defineR(Y ,S) := ⋃
s∈S Rs, and observe thatR(Y ,S)

is F−generated, and that |R(Y ,S)| = 3|S|.
In the example above, with s = {a, b, c}, s′ = {a, d, e} and

s′′ = {d, e, f }, and with the molecules ordered alphabeti-
cally,R(Y ,S) comprises the nine reactions:

s → a + b + c, a + b → ws,ws + c → s;

s′ → a + d + e, a + d → ws′ ,ws′ + e → s′;
s′′ → d + e + f , d + e → ws′′ ,ws′′ + f → s′′.

Claim: (Y , S) has an exact 3-cover, if and only if R(Y ,S)
is F ′−generated for some subset F ′ of F of size at most
q = |Y |.

Proof of Claim. First, suppose that S′ is an exact 3-cover
for Y . Then |S′| = q and every element of Y is generated
by a reaction that has its (sole) reactant in S′. It follows
that for every s ∈ S (say, s = {y, y′, y′′} with y < y′ < y′′)
the associated reaction y + y′ → ws has reactants that
can be generated from S′. This ensures, in turn, that the
other associated reaction ws + y′′ → s can proceed. Con-
sequently, all of S can be constructed, and so each of the
reactions s → a + b + c for all s = {a, b, c} ∈ S can also
now proceed. In summary, the reactants of all reactions in
R(Y ,S) can be generated by starting just with molecules in
S′. Thus R(Y ,S) is F ′−generated for any subset F ′ = S′ of
F(= X) of size q that provides an exact 3-cover for Y .
Conversely, suppose that R(Y ,S) is F ′−generated for

some subset F ′ of F(= X) of size at most q = |Y | (we will
show that this implies that S contains an exact 3-cover).
For each moleculem in F ′ for which either:

(i) m = y ∈ Y , or
(ii) m = ws ∈ W .

we proceed as follows. In case (i) select replace y by s for
any s ∈ S that contains y (this is possible since we have
assumed earlier, without loss of generality, that every ele-
ment of Y is present in at least one element of S); in case
(ii) we replace m by s (i.e. the same s appearing in ws).
Then s generates y in case (i), and s generates the reac-
tants required to generate ws in case (ii). In this way we
can replace F ′ by a subset S′ of S, with

|S′| ≤ |F ′| ≤ q (1)

and for which R(Y ,S) is S′−generated. Thus, it is possible
to generate each element of Y by some series of reactions
fromR(Y ,S) starting with just the molecules in S′.
Now, the only reactions that generate molecules in Y are

those that have a single reactant in S, and any s ∈ S that
is the product of any sequence of reactions from R(Y ,S)
requires that all three elements of s are either present or
produced earlier in that sequence of reactions. It follows
by an inductive argument that each molecule in Y must
be able to be generated by just a single reaction from S′,
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and so S′ is a 3-cover for Y . This requires that 3|S′| ≥ |Y |,
and so |S′| ≥ q ,which, combined with Inequality (1), gives
|S′| = q, and so (since |Y | = 3q) S′ is an exact 3-cover for
Y , as required.

Additional file

Additional file 1: Table S1. List of the 123 molecules of the food set and
their impact on the RAF size.
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