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Spontaneous absolute asymmetric synthesis
promoted by achiral amines in conjunction with
asymmetric autocatalysis
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Abstract

The origin of homochirality of organic compounds such as L-amino acids and D-sugars have intrigued many
scientists, and several hypotheses regarding its homochirality have been proposed. According to the statistical
theory, small fluctuations in the ratio of the two enantiomers are present in a racemic mixture obtained from
the reaction of achiral molecules.
We report herein the reaction of pyrimidine-5-carbaldehyde and diisopropylzinc in the presence of achiral amine
such as N,N’-dimethylpiperazine, N,N’-diethylpiperazine or N-methylmorpholine but in the absence of a chiral sub-
stance. The stochastic formation of (S)- and (R)-pyrimidyl alkanols with detectable ee was observed. This study
shows that the slight fluctuation of the enantiomeric ratio of pyrimidyl alkanol produced at the initial reaction step
can be enhanced significantly in conjunction with asymmetric autocatalysis with amplification of enantiomeric
excess. We believe that the stochastic behavior in the formation of pyrimidyl alkanol constitutes one of the condi-
tions necessary for spontaneous absolute asymmetric synthesis.

Background
The origin of biomolecular homochirality such as L-
amino acids and D-sugars is an interesting mystery [1-6].
Spontaneous absolute asymmetric synthesis [1], that is,
the synthesis of enantioenriched products from achiral
conditions in the absence of a chiral substance, has been
proposed as one of the origins of chirality. Spontaneous
asymmetric crystallization of achiral compounds is
another of the proposed mechanisms of homochirality
[7-10]. However, spontaneous absolute asymmetric
synthesis without using chiral compounds differs from
crystallization in that it is possible for an increase in the
amount of chiral compound to occur. Experimental reali-
zation of spontaneous absolute asymmetric synthesis via
asymmetric autocatalysis has been a challenge, although
the theories have been proposed [11-13].
During our continuing studies of asymmetric autocata-

lysis [14-25], we have observed asymmetric autocatalysis
of 5-pyrimidyl alkanols in the enantioselective addition of
diisopropylzinc (i-Pr2Zn) to pyrimidine-5-carbaldehyde.

It is noteworthy that, even when an asymmetric autocata-
lyst with an extremely low ee was used as the initial cata-
lyst, an almost enantiomerically pure product, i.e.,
asymmetric autocatalysis, could be obtained by consecu-
tive reactions [16]. For example, when pyrimidyl alkanol
with ca. 0.00005% ee was used as the initial catalyst,
almost enantiomerically pure (> 99.5% ee) product was
obtained after three consecutive asymmetric autocatalytic
reactions [16]. Moreover, a variety of chiral organic com-
pounds [26,27] and inorganic crystals including isotopi-
cally chiral compounds [28,29], inorganic crystals such as
quartz [30], organic crystals of achiral compounds
[31,32] and even a physical chiral factor, that is, right- or
left-handed circularly polarized light [33], can act as
chiral initiators to afford 5-pyrimidyl alkanol with a high
ee in conjunction with asymmetric autocatalysis, with the
product having an absolute configuration corresponding
to that of the chiral initiators.
On the other hand, from the standpoint of statistics,

small fluctuations in the ratio of the two enantiomers
are expected to be present in racemic mixtures of chiral
molecules [1,34,35]. We envisaged that when the reac-
tion system involves asymmetric autocatalysis with
amplification of ee, the initial small imbalance of
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enantiomers in racemic mixtures that arises from the
reaction of achiral reactants becomes overwhelming to
afford a highly enantiomerically enriched product
[36-44].
We have reported that without adding any chiral sub-

stance, enantioenriched (S)- or (R)-pyrimidyl alkanol 2
is generated in an approximately stochastic distribution
from the reaction between pyrimidine-5-carbaldehyde 1
and i-Pr2Zn in conjunction with asymmetric autocataly-
sis [45-48].

Results and Discussion
We previously reported that dialkylzincs are activated by
amines to add to aldehydes [49,50]. Because an amine is a
Lewis base, it coordinates to the zinc atom of dialkylzinc

[51], and this coordination enhances the nucleophilic
character of the dialkylzinc. We reasoned as follows: when
achiral amine is added to the reaction between aldehyde 1
and i-Pr2Zn, the achiral amine acts as a catalyst to pro-
mote the formation of racemic alkanol 2 with statistical
fluctuation of chirality. The initial enantioenrichment
would be amplified by the subsequent asymmetric autoca-
talysis to afford (S)- or (R)-alkanol 2.
Here, we report that the enantioenriched pyrimidyl

alkanol 2 is generated from the reaction between pyri-
midine-5-carbaldehyde 1 and i-Pr2Zn in conjunction
with asymmetric autocatalysis under achiral conditions
in the presence of an achiral amine, such as N,N’-
dimethylpiperazine 3, N,N’-diethylpiperazine 4 or N-
methylmorpholine 5 (Figure 1).

Figure 1 Asymmetric synthesis of pyrimidyl alkanol in the presence of achiral amines without the addition of a chiral substance; After
the reaction between pyrimidine-5-carbaldehyde 1 and i-Pr2Zn in the presence of achiral amines, asymmetric autocatalysis amplified
the spontaneously generated small fluctuation of ee to afford the enantiomerically enriched (S)- or (R)-5-pyrimidyl alkanol 2.
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First, reaction of pyrimidine-5-carbaldehyde 1 with
i-Pr2Zn in the presence of achiral N,N’-dimethylpipera-
zine 3 in toluene, followed by one-pot asymmetric auto-
catalysis with amplification of ee, was examined. The
enantioenriched (S)- or (R)-5-pyrimidyl alkanol 2 was
obtained. The results are shown in Table 1. To examine
the distribution of the absolute configuration of the pre-
dominantly formed enantiomer 2, 75 experiments were
run under the same reaction conditions. In all cases,
enantioenriched 5-pyrimidyl alkanols 2 with either S or
R configurations were formed. As shown in Figure 2a,
the absolute configurations of the resulting 5-pyrimidyl
alkanol 2 exhibited an approximate stochastic distribu-
tion (the S form occurred 39 times and the R form
occurred 36 times). It should be noted that the ee of the
product 2 can be easily amplified significantly by further
consecutive asymmetric autocatalytic reactions. That is,
by using the alkanol 2 with low to moderate ee obtained
in the described method as the asymmetric autocatalyst,

additional reactions between pyrimidine-5-carbaldehyde
1 and i-Pr2Zn could afford finally almost enantiomeri-
cally pure product 2 with the same absolute configura-
tion as to the submitted asymmetric autocatalyst, in
highly reproducible manner [16].

Table 1 Asymmetric synthesis of pyrimidyl alkanol 2
without adding chiral substances by the addition of
diisopropylzinc to pyrimidine-5-carbaldehyde 1 in the
presence of N,N’-dimethylpiperazine 3.

Run Pyrimidyl
alkanol 2

Run Pyrimidyl
alkanol 2

Run Pyrimidyl
alkanol 2

ee Config. ee Config. ee Config.

1 19 R 26 3 R 52 36 S

2 18 S 27 7 S 53 23 S

3 8 R 28 4 S 54 32 R

4 10 S 29 14 R 55 32 S

5 11 R 30 6 S 56 4 S

6 8 S 31 6 R 57 6 R

7 5 S 32 4 S 58 12 S

8 9 R 33 4 R 59 15 S

9 6 S 34 3 S 60 5 S

10 4 S 35 15 S 61 42 R

11 4 S 36 20 S 62 52 R

12 57 R 37 18 R 63 2 S

13 2 R 38 9 R 64 43 R

14 37 S 39 37 S 65 35 R

15 23 R 40 27 S 66 3 S

16 4 S 41 28 R 67 2 R

17 6 R 42 3 R 68 4 S

18 4 S 43 9 S 69 4 S

19 7 S 44 32 S 70 42 R

20 47 R 45 29 R 71 32 R

21 29 R 46 11 S 72 18 R

22 25 R 47 16 R 73 6 S

23 10 S 48 52 R 74 9 R

24 12 S 49 9 R 75 19 R

25 31 R 50 4 S

26 12 S 51 19 R

Figure 2 Histogram of the absolute configuration and
enantiomeric excess of pyrimidyl alkanol 2. The reaction of
aldehyde 1 with i-Pr2Zn in the presence of (a) N,N’-
dimethylpiperazine 3, (b) N,N’-diethylpiperazine 4, (c). N-
methylmorpholine 5, (d) total of (a), (b) and (c); stochastic behavior
in the formation of (S)- and (R)-5-pyrimidyl alkanols 2 was observed
in the presence of achiral amines 3-5, respectively.
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Next, the addition of i-Pr2Zn to pyrimidine-5-carbal-
dehyde 1 in the presence of achiral N,N’-diethylpipera-
zine 4 was examined. The results are summarized in
Table 2 and Figure 2b. The absolute configurations of
the pyrimidyl alkanol 2 formed show an approximate
stochastic distribution (formation of S 9 times and R 11
times). The reaction in the presence of achiral N-
methylmorpholine 5 gave the results of the stochastic
formation of (S)- and (R)-alkanol 2 (formation of S 11
times and R 9 times, Table 3 and Figure 2c). The total
distribution of alkanol 2 in the presence of achiral
amines 3-5 is summarized in Figure 2d. The results of
the formation of (S)-2 in 59 times and (R)-2 in 56 times
strongly suggest that the reaction is spontaneous abso-
lute asymmetric synthesis.

Experimental
The typical experimental procedure is as follows: The
pyrimidine-5-carbaldehyde 1 (37.6 mg, 0.20 mmol) dis-
solved in 2.0 mL of toluene was added dropwise over a
period of 1 h to a mixture of i-Pr2Zn (0.40 mL of 1 M
toluene solution, 0.40 mmol) and achiral N,N’-dimethyl-
piperazine 3 (1.1 mg, 1.0 × 10-2 mmol) in toluene (4.0
mL) at 0°C. After the mixture was stirred for a period of
12 h at 0°C, 6.6 mL of toluene and i-Pr2Zn (0.80 mL of 1
M toluene solution, 0.80 mmol) were added successively,
and the mixture was stirred at 0°C for a period of 15 min.
The aldehyde 1 (75.3 mg, 0.4 mmol) in 2.0 mL of toluene
was added dropwise at 0°C over a period of 40 min. After
the mixture was stirred at 0°C for a period of 2 h, the
reaction was quenched using 2.4 mL of 1 M hydrochloric
acid. Saturated aqueous sodium hydrogen carbonate (7.2
mL) was then added, and the mixture filtered through
Celite. The filtrate was extracted using ethyl acetate,
dried over anhydrous sodium sulfate, and evaporated.
Purification of the residue by silica gel TLC gave the pyri-
midyl alkanol 2.

Conclusions
We have demonstrated the stochastic formation of (S)-
and (R)-5-pyrimidyl alkanol 2 from pyrimidine-5-carbal-
dehyde 1 and i-Pr2Zn in the presence of achiral amines
without the intervention of a chiral auxiliary. The pre-
sence of achiral amines facilitated the initiation of asym-
metric autocatalysis by activation of diisopropylzinc. The
stochastic behavior of the formation of (S)-and (R)-5-
pyrimidyl alkanol 2 was observed in the presence of
achiral amines. We believe that the phenomenon
reported here constitutes one of the conditions neces-
sary for a spontaneous absolute asymmetric synthesis. In
this reaction system involving asymmetric autocatalysis
with amplification of ee, the imbalance of enantiomeric
purity in the initially forming racemic mixtures that
arises from the reaction of achiral reactants becomes
overwhelming to afford an enantiomerically enriched
product. The mechanism and reaction model for the
spontaneous generation of enantiopurity and amplifica-
tion of ee in asymmetric autocatalysis [22,35-44,52-56]
are now under investigation.

Methods
All reactions were performed under an argon atmo-
sphere. Toluene was distilled under argon in the pre-
sence of sodium benzophenone ketyl before use.
Toluene solution of diisopropylzinc (1.0 M) is commer-
cially available. Achiral amines 3-5 are commercial
sources and were distilled from potassium hydroxide
under reduced pressure before use. Pyrimidine-5-carbal-
dehyde 1 was synthesized and purified according to a
reported procedure and was finally purified by sublima-
tion before use. The ee of 5-pyrimidyl alkanol 2 was
determined by HPLC using a chiral stationary phase
(Daicel Chiralpak IB, eluent 5% 2-propanol in hexane
(v/v), flow rate 1.0 mL min-1, 254 nm UV detector,
retention time 11.4 min for (S)-2, 15.9 min for (R)-2).

Table 2 Asymmetric synthesis of pyrimidyl alkanol 2
without adding chiral substances by the addition of
diisopropylzinc to pyrimidine-5-carbaldehyde 1 in the
presence of N,N’-diethylpiperazine 4

Run Pyrimidyl
alkanol 2

Run Pyrimidyl
alkanol 2

Run Pyrimidyl
alkanol 2

ee Config. ee Config. ee Config.

1 50 S 8 53 S 15 36 S

2 57 R 9 39 R 16 24 S

3 47 R 10 40 R 17 22 R

4 55 S 11 37 S 18 5 S

5 14 R 12 20 S 19 35 R

6 27 R 13 47 R 20 11 S

7 10 R 14 47 R

Table 3 Asymmetric synthesis of pyrimidyl alkanol 2
without adding chiral substances by the addition of
diisopropylzinc to pyrimidine-5-carbaldehyde 1 in the
presence of N-methylmorpholine 5

Run Pyrimidyl
alkanol 2

Run Pyrimidyl
alkanol 2

Run Pyrimidyl
alkanol 2

ee Config. ee Config. ee Config.

1 34 S 8 15 R 15 6 S

2 37 R 9 33 S 16 9 R

3 52 S 10 7 R 17 29 R

4 33 S 11 10 S 18 12 S

5 20 R 12 6 S 19 12 R

6 16 R 13 7 R 20 27 S

7 33 S 14 7 S
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Abbreviations
S: sinister; R: rectus; T: tertiary; I: iso; EE: enantiomeric excess PR: propyl; BU:
butyl; M: milli; M: mol/L; G: gram; L: liter; ME: methyl; ET: ethyl; TLC: thin-layer
chromatography; HPLC: high performance liquid chromatography; MIN:
minute.
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