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Abstract

Recent reports about enantioselective organoautocatalytic systems, in which small organic molecules assist in their
own formation and under conservation of their absolute configuration, are discussed. This process, appearing as a
natural extension to non-covalent enantioselective organocatalysis, seems analogous to template-directed self-repli-
cation, previously observed in simple organic molecules and holds implications for models on the origin of life.

Review
The idea that molecules could make countless exact
copies of themselves offers fascinating prospects in
materials science and holds interesting implications for
the origin of life on earth. Oparin was the first to realize
the importance of self-replication for life processes [1,2].
Self-replication appeared for a long time to be a sole
domain of RNA and DNA molecules replicating via
enzymatic pathways [3], until the pioneering studies of
von Kiedrowski [4-7], who first demonstrated that oligo-
nucleotides could self-replicate even non-enzymatically
via template-directed autocatalysis. Self-replication has
been also invoked as an integral part of systems chemis-
try [8,9].
That even much smaller and simpler molecules are

capable of exhibiting self-replication, was first shown by
Rebek and co-workers for artificial synthetic models
(Figure 1) [10,11].
The finding has been much debated. Challenged by

Menger et al. [12,13], who argued that the rate enhance-
ment is due to amide-catalysis and not due to template-
autocatalysis, Rebek’s interpretation of self-replication
has been vindicated by Reinhoudt’s group later [14].
Since then, a few other scattered reports about self-
replicating molecules have appeared in the literature
[15-18].
The potential enantioselectivity of the self-replicating

autocatalytic process was implied, but has not drawn
particular attention at that time.

Asymmetric autocatalysis, a term first introduced by
Wynberg, is the process of automultiplication of a chiral
compound in which the chiral product acts as a chiral
catalyst for its own formation [19]. Catalyst and product
possess of the same absolute configuration and are
structurally related. The first example for such a process
was reported by Soai in 1990, in the irreversible enantio-
selective addition of dialkylzinc reagents to pyridine-3-
carbaldehyde (Figure 2) [20]. Thus, when product of the
reaction was used as catalyst at 20 mol% loading and
with 86% ee, the newly generated product was isolated
in 67% yield and 35% ee. No autoamplification of pro-
duct enantiomeric excess was observed.
In 1995, Soai reported the ability of a chiral pyrimidyl

alkanol to amplify a tiny initial product enantiomeric
excess - in the presence of i-Pr2Zn - to almost enantio-
meric purity in a sequential batch reaction protocol
(Figure 3) [21-23]. This process is highly advantageous,
because product and catalyst don’t need to be separated
after completion of the reaction, allowing required pro-
duct purity easier to be obtained [22,23].
The Soai reaction is therefore able to generate

impressive enantioenrichment from nominally achiral
initial conditions, a behaviour unprecedented in stereo-
chemistry, and as an example of true “absolute asym-
metric synthesis” in absence of external chiral influences
[24]. Soai observed a positive non-linear effect
((+)-NLE) in this reaction [21], indicating the involve-
ment of catalyst aggregation [25]. The reaction is self-
accelerating, because the rate-determining step is of the
quadratic (or even higher) reaction order in the product
concentration, due to formation of a catalytically active
homochiral dimeric product Zn-complex (Figure 4)
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[26-28]. As a result, one of the asymmetric autocatalytic
product enantiomers is outrun by its antipode, which
forms faster.
The first example of asymmetric autocatalysis for an

organocatalytic (metal-free) system was reported by
Mauksch and Tsogoeva in 2007 for the reversible Man-
nich reaction of acetone and N-PMP-protected a-imino
ethyl glyoxylate (Figure 5) [29], followed by demonstra-
tion of spontaneous asymmetric amplification under
nominally achiral starting conditions for the same reac-
tive system and by the same authors [30,31].
The enantioselectivity observed in the presence of pro-

duct catalyst is comparable to that obtained with known
external catalysts, like proline. The majority of the
newly formed product has the same absolute configura-
tion as the initially added product catalyst, which might
suggest a template-directed (self-replicating) mechanism.
The Mannich product was assumed to bind non-cova-
lently via hydrogen bonds to the reactant, which is
attacked by the nucleophile (activated ketone in enol or
enamine form) (Figure 6).
This mechanistic proposal has a high appeal, because

it is resembling existing mechanistic concepts for classi-
cal non-covalent (enantioselective) organocatalysis
[32,33]. Further evidence supporting this idea was found

by DFT computations, which allowed to locate the tran-
sition state structures for this transformation.
In 2002 Philp reported a non-asymmetric experimen-

tal example of a minimal self-replicator in the bimole-
cular reaction A + B ® T (also the initiation
step): reactant molecules A and B, both bound by sec-
ondary interactions (hydrogen bridges) to a product
template T, react to give a dimer [T.T] in a template
directed synthesis (Figure 7) [16], based on the earlier
expectations of von Kiedrowski for related systems [5].
The initially formed product template dimers then
could facially release the monomeric autocatalysts
through dissociation [5,16].
This mechanism, extended to account for the chirality

of the template [31], provides a simple explanation for
the observed chiral induction in the organoautocatalytic
Mannich reaction: selective transition state structures
(where the chiral product template catalyzes formation
of new product molecules of the same absolute config-
uration) may yield homochiral dimers, while antiselec-
tive transition state structures (where the product
template catalyzes formation of new product with oppo-
site absolute configuration) may yield heterochiral
dimers. For the Mannich reaction, the formation of
homochiral dimers in the autocatalytic step was indeed

Figure 1 Self-replicating system of Rebek.
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Figure 2 Soai’s initial demonstration of an autocatalytic reaction.
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found to be kinetically preferred, in accord with the
observed enantioselectivity [29].
Furthermore, such organoautocatalytic reactions

should involve merely linear autocatalysis (unlike to
Soai’s example) in the light of lacking coordination sites
at a metal allowing to form multiple catalytic aggregates.
Linear autocatalysis alone, though, cannot result in the
observed asymmetric amplification [34].
Hence, to explain the unprecedented spontaneous

mirror symmetry breaking observed in the Mannich
reaction [30], Ribó and co-workers proposed the reversi-
ble exergonic formation of a heterochiral dimer of the
product autocatalyst [35], resulting in mutual inhibition

of autocatalyst formation through reduction of the anti-
pode’s concentration - in analogy to the seminal theore-
tical proposal of such spontaneous asymmetric
amplification by Frank in 1953 [36]. However, such
thermodynamically stable dimers were not yet located
computationally or observed experimentally for this
reactive system. As an alternative, recycle kinetics, invol-
ving endergonic formation of labile heterochiral dimers
which take part in closed reaction loops, was invoked
recently to explain the observation of spontaneous mir-
ror symmetry breaking in such formally closed reversible
(homogenous) reactive systems [30,37]. Non-equilibrium
quasi-steady states might form temporarily in open

Figure 3 The Soai autocatalytic reaction: a first absolute asymmetric synthesis.

Figure 4 The dominant catalytic species in the Soai reaction.
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Figure 5 The first asymmetric organoautocatalytic system: Mannich reaction of acetone with N-PMP-protected a-imino ethyl
glyoxylate.

Figure 6 Transition-state structure for the formation of S enantiomer of the Mannich product computed at B3LYP/6-31G level [29].
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subsystems of closed systems and with cyclic kinetics
[37,38]. A related theoretical model was also forwarded
by Plasson and co-workers, wherein it was proposed
that a non-spontaneous reactant recycling step could be
driven through coupling to an external source of energy
[39,40]. This situation might apply to several biochem-
ical reaction cycles, driven e.g. by hydrolysis of energy
rich compounds.
The reports of the first example for enantioselective

organoautocatalysis has drawn considerable attention.
Results for a similar reactive system (Mannich reaction
of N-PMP-protected a-imino ethyl glyoxylate with
cyclohexanone instead of acetone) and in the presence
of water were reported in 2008 (Figure 8) [41]. Notably,
1H NMR studies revealed the acceleration of the rate in
course of the reaction and in presence of product

catalyst. Such rate acceleration is often seen as a hall-
mark of autocatalytic reactions.
Most recently, Wang and co-workers further reported

the enantioselective organoautocatalytic Mannich reaction
of isovaleraldehydes to the same N-PMP-protected
a-imino ethyl glyoxylate and employed both product cata-
lysts and their close mimics (Figure 9) [42]. In addition to
the often observed near retention of product enantiomeric
excess (99% ee), it was also reported that a noteworthy -
fairly significant - change of diastereoselectivity in course
of the reaction occurs (autocatalyst with syn-configuration
provides the formation of anti product). To explain, these
authors suggested that the anti product may be formed
faster than the syn product under kinetic control.
The generality of asymmetric organoautocatalysis in

various organic reactions is conceivable. It might be

Figure 7 Self-replicating system of Philp.

Figure 8 Asymmetric organoautocatalytic Mannich reaction of cyclohexanone with N-PMP-protected a-imino ethyl glyoxylate.
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expected, that this phenomenon may be demonstrated
for other reactions than the Mannich reaction in the
near future.
Seemingly, presumably well-understood organic reac-

tions appear to have much more complicated mechan-
isms, than previously expected. This poses a challenge for
further mechanistic investigations of organoautocatalytic
reactions, both experimentally and theoretically. Classical
existing mechanistic concepts may not be sufficient to
allow yet a full understanding of all the processes
involved. There is no doubt, that the further insights
gained will be of great value for the synthetic community
both in research laboratories and in industry. A further
related enticing prospect might be the deeper under-
standing of the fundamental question of biological
homochirality.
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