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Abstract

energy and area entropy.

When the free energy of similar but distinct molecule-sized objects is plotted against the temperature at which
their energy and entropy contributions cancel, a highly significant linear dependence results from which the
degree of similarity between the distinctly different members within the group of objects can be quantified and a
relationship between energy and entropy is derived. This energy-entropy relationship entirely reflects the mathe-
matical structure of thermodynamic equations, is in this sense fundamental and therefore does probably not
dependent on material nor scale. The energy-entropy relationship is likely to be of general interest in molecular
biology, population biology, synthetic biology, biophysics, chemical thermodynamics, systems chemistry and phy-
sics, most notably in particle physics and cosmology. In physics we predict a consistent and perhaps testable way
of classifying micro black holes, to be generated in future Large Hadron Collider experiments, by their gravitational

Introduction

The larger the physical scale is, the less frequently the
term ‘energy’ and the more frequently the term ‘entropy’
is used in physics discussions. Energy, in the sense of
‘bound’ or ‘inner’ energy, is an entity that is usually mea-
sured experimentally in some more or less direct way.
Entropy is an entity impossible to measure directly; it can
only be determined either in conjunction with measured
energy and another measured experimental parameter,
free energy for instance, or it is calculated or counted
using statistical mechanics or some other theory on the
degeneracy of microstates. Since, owing to their distance
from the observer, very large-scale physical objects are
difficult to measure directly, the preferential use of
entropy and the Second Law of thermodynamics is not
astonishing in cosmology, neither is the preferential use
of energy in quantum physics, in particular, strict energy
conservation as expressed through the First Law of
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thermodynamics. Of course both laws apply a priori to
all scales and physics, and of course the above statements
are not based on statistical analyses or other objective
grounds but on the subjective impression of the author
to whom correspondence should be addressed.

In this article we present very briefly the results of a
comprehensive analysis of published experimental ther-
modynamic data on the unfolding of many hundreds of
proteins and nucleic acids, on molecular associations in
host-guest complexes, on the stability of ab initio (quan-
tum mechanically) calculated water clusters and the
semi-empirically (force field) calculated formation ther-
modynamics of small organic molecules from their ele-
ments. We then mainly discuss the consequences when
i) these numerical results are first grouped into families
that distinguish ensembles of evidently similar objects,
ii) the grouped results are correlated in a specific two-
dimensional projection of a five-dimensional parameter
space and, ultimately, iii) the results are detached from
the molecular scale.

The discussion begins with deriving an equation that
relates energy changes to entropy changes of the same
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objects without usage of additional empirical parameters
or functions that are not explained from the fundamen-
tals. The only new ‘entity’ or ‘information’ is the fact
that the objects are grouped into families of obviously
similar characteristics. Protein mutants and nucleic acid
variants are macromolecules that usually differ only very
little in overall shape and folding potential - only one or
two in dozens or hundreds of ‘chain links” are different
within the same group - but may differ rather heavily in
measured energy and entropy of folding. It is known
since 1970 that in many very different chemical and bio-
logical systems large entropy and energy contributions
compensate one another, to give small resulting free
energy changes, that is, small net effects. We do not dis-
cuss this here - our studies on the compensation effect
and statistical significance of the utilised linear regres-
sions are described in full detail to be published else-
where - but rather focus on the consequences of the
results. Once energy and entropy changes are funda-
mentally linked to one another, the laws that on the one
hand restrict in isolated systems average net energy
changes to zero and on the other hand confine sponta-
neous net entropy changes to zero or more but not less,
thus, condemn entropy to maximise over time, may
become fundamentally linked as well. If our analysis on
the thermodynamics of medium-sized objects, which
can either be described by quantum physics or by classi-
cal physics, were generalizable to all scales, we were to
conclude the following.

The First and Second Law of thermodynamics
describe isolated multicomponent systems in the obser-
vable universe as objects that conserve their energy due
to their very isolation and that spontaneously maximise
their entropy over time. For the latter to be true, the
objects’ size must be sufficiently large for fully reversible
changes, that is, exactly reversed changes in their micro-
states, to become too improbable to occur within their
lifetime. Additionally, an isolated ensemble of similar
objects in the same universe will spontaneously maxi-
mise its overall entropy over time in a way (at a rate)
that reflects its overall energy and identity, thus, its
compositional and structural characteristics that define
it as an ensemble of similar objects. If the physical isola-
tion of the ensemble confines its overall average energy
changes to zero, the way (rate) of maximizing entropy
can only change when the degree of similarity within
the ensemble of objects changes as well. We conclude
that, given a constant (accessed) overall volume of an
ensemble, the higher the degree of similarity is among
its objects the slower is their rate of spontaneous
entropy maximization and the closer to maximum
entropy they are. Hence, it seems as if the rate of maxi-
mizing overall entropy of an ensemble of objects were
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related to the similarity of what characterises the indivi-
dual objects within the ensemble.

Here we present a statistical means of quantifying the
degree of similarity, namely, through the linear regres-
sion coefficient obtained from the correlation of the dif-
ference with the ratio of two object characterizing
parameters (energy U and entropy S) that both depend
on one independent variable (absolute temperature 7).
We depict, using experimental numerical values, 3D
projections of the 5D parameter space {U; S; T; U — T'S;
U/S},v (at constant pressure and volume pV).

Experimental

The vast majority of the primary data are experimental
and about one third of those originate from differential
scanning calorimetric experiments where both the energy
change under constant pressure, i.e., the enthalpy change
AH, and the position of thermodynamic equilibrium
between two macroscopic states, i.e., the free enthalpy
change AG (Gibbs free energy), are derived from equa-
tion 1. The measured heat capacity C;, (at constant pres-
sure) is a function of temperature T within a T-range
needed to observe both major macroscopic states
(termed ‘folded” and ‘unfolded’) in virtually quantitative
abundance. Enthalpy changes in a system open to atmo-
spheric pressure, AH = Hmacrostate 1~ Hmacrostate 2 and
energy U in a closed system are linked through U = H -
p-V. Likewise, the Gibbs free energy difference AG =
Gmacrostate 1 — Gmacrostate 2 1S @ measure for the driving
force towards macroscopic stasis under constant pres-
sure, and free energy is linked through F = G — p-V. The
corresponding change in entropy AS of the system
is usually calculated from AG = AH — T-AS (or AF =
AU — T'AS) rather than directly from equation 1.

C,=dH/dT=T-dS/dT=-T-(d’G/dT?) (1)

Another definition of heat capacity is the mean
squared fluctuation in energy scaled by kT 2, or the
mean squared fluctuation in entropy scaled by k (the
Boltzmann constant), as shown in equation 2 [1].

C,=(8H?)/kT*=(55°)/k ()

The difference in specific heat capacity between both
major macroscopic states is directly measured from AC, =
Co(T100% unfolded) = Cp(T100% folded); A always refers to the
difference between two distinct macroscopic states. Both
Cp(100% unfolded) and C,(100% folded) are assumed
to exert the same T-dependence, hence 0AC,/0T = 0,
ie. AC, = const.

The other two thirds of experimental data originate
from so-called van’t Hoff experiments in which, instead
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of C,, equilibrium constant K = (fraction macrostate 1)/
(fraction macrostate 2) = exp[-AG/RT] (R = 1.9872 cal
mol™* K™) is measured within an appropriate range of T
or other parameter capable of completely shifting the
thermodynamic equilibrium from one macroscopic state
to another. For thermally induced macrostate changes
the accompanying energy and entropy changes are eluci-
dated from fitting the experimental data to equation 3:

RInK=-AH/T+AS=-AG/T (3)

In the vast majority of published van’t Hoff experi-
ments heat capacity changes are ignored altogether:
AC, = 0. This approximation is justified by the usually
observed linear relationship for InK versus 1/7T. In both
kinds of experiments, calorimetric and van’t Hoff, any
true T-dependence of AC, may be neglected when com-
pared to the one of AG = AH — T'AS (or of AF = AU -
T-AS) over the measured T-range. In summary, classical
thermodynamics provides us with equations 4 and 5 in
the fundamental, most general case AC, = f(T) [2].
Equations 6 and 7 result from the ‘calorimetric neglect-
ion’ of the T-dependence of AC,. After a ‘van’t Hoff
neglection’ of AC,, AH and AS become constants with
respect to T.

T
AHp=AHy +J AC,(T)dT (4)

ref

T

AC,(T)
ASp=ASy + J‘ dT (5)
Tref
AHp=AHy +AC,-(T-T,s) (6)
ASp=ASy +AC,-In(T/T,y) (7)

Procedure

We extracted from the literature 1555 experimental
datasets {ACP;AH Tmf;ASTmf} on the thermal and non-
thermal unfolding of proteins and nucleic acids. The
vast majority of data was downloaded from the
ProTherm database [3,4] at http://gibk26.bse kyutech.ac.
jp/jouhou/protherm/protherm.html and controlled in
the original literature. For each dataset Tyer = Tap - TAS
= Ty Ty is the so-called midpoint or equilibrium tem-
perature, the temperature at which in a dynamic and
fully reversible two-state equilibrium the fractions of
both (two particularly stable and well observable)
macrostates are equal, therefore AGy =0 (eqn. 3). We
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expanded the above datasets with an additional function
each, the state function AGt = AHt — T-ASt, using
equations 3 (right-hand side), 6 and 7. At that stage, no
numerical values were attributed to T yet. Each dataset
was now made up of five ‘characterizing parameters’
{AC,;AH ;ASy ;T =AHy [ASy ;AGp=AH-T-ASy},
all of which are dependent on one another through the
fundamental thermodynamic equations 1 to 5, and of
one ‘independent variable’ 7. Note that all five para-
meters, despite being derived from C; and T, bear dis-
tinct physical meanings (interpretations).

All 1555 datasets were then grouped into 154 families,
according to the structural similarity of the members
within each group (mostly ‘single-chain link’ variants,
‘point mutants’). The datasets of each of the 154 groups
were submitted to a group-specific correlation between
the two combined (with respect to AH and AS) para-
meters AGr and T,,. An increasingly refined sampling
of AGt on a representative part of the groups led to a
complete correlation analysis AGy_ .~ vs. Ty, of all
groups at a group-specific T = Tyediane Imedian iS the
statistical median of all equilibrium temperatures 7, of
a group.

Results

The correlations between T = 273 and 373 K appeared
visibly linear for the vast majority of the analysed
groups, hence, a linear regression according to equation
8 was used to characterise every group.

AGp=hy =Ty sy =hy—(AHy [ASy )-sp 8)

Detailed results are described in the additional files 1
and 2. Here it suffices to note that all members of the
same group share the same ‘group parameters’ st and
st which express nothing more than the average energy
and, respectively, entropy of the group of similar objects.
They are therefore only dependent on T and the choice
of which individual members constitute ‘a group’. The
numerical values for the slope st_, — are actually aver-
age values of all numerical ASy  values of each group
member within one group. The numerical values for /iy
and all other st depend on AC,(T), the more so the
larger |T — Tiedian| is- According to equation 8 the
T-dependence of it and st is the same as for AGy. For
AC, = const. this T-dependence adopts the form f(T) =
a + b-T + ¢TInT, in which c is nil for AC, = 0 (eqns. 3,
6 and 7). We fitted this function to all experimental
data, to obtain the ‘group constants’ (with respect to T)
ho. and sg_o for it = hy + hy-T + hyTInT and st = sg +
$1°T + $5-T-InT. Note that /%y, and sy, [see additional
file 2] can all be derived from the ASy , AC, and Ty,
values of a group with no additional information or
assumptions (eqn. 42 [see additional file 1]).
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The main result is that at Tieqian, at the temperature
where the sum of AG of all group members within one
group is closest to nil, the vast majority of experimental
data produces a linearity of unexpected quality. The lin-
earity as such remains visible but its quality, as
expressed through the regression coefficient, degrades
quite strongly and monotonously with increased |T —
Tmedian| (Figures S14-S15 [see additional file 1]) and, in
a non-trivial fashion, as we join evidently less similar
objects into the analysed group (Figures S1, S5-S6, S10-
S11 [see additional file 1]). The experimental group
sizes vary between 4 and 68 (average 10). The regression
coefficients rt . of all calorimetric groups lie between
0.90 and 0.999’999 with an abundance maximum
between 0.999 and 0.9999 (Figures S12-S13 [see addi-
tional file 1]). The van’t Hoff groups do not fall far
behind (Figure S7 [see additional file 1]). In addition,
the same correlation method was tested on the calcu-
lated thermodynamics of formation from the pure che-
mical elements in their standard state of a homologue
series of PM3-calculated simple organic molecules, as
well as of published ab initio-calculated water clusters
[5], using statistical thermodynamics at 298 K. The
somewhat lower correlation coefficients ryggix as com-
pared to the above experimental 7t~ values are due
to the fact in part that at 7 = 298 K many calculated
datapoints within one group do not center around AG =
0. The linearity of similar groups is nevertheless unam-
biguously apparent (Figures S37-S39 [see additional
file 1]).

Discussion

The mere fact that changes in energy and entropy are
fundamentally correlated is not unexpected; after all,
their temperature dependence is akin and dictated by
the corresponding change in heat capacity (eqn. 1), i.e.,
their mean fluctuation (eqn. 2). A relationship between
free energy and the temperature at which it vanishes is
not astonishing either. Both AGy and T, are commonly
interpreted as a representation of ‘thermodynamic stabi-
lity’, the former is expressed in energy units and
depends on AC,(T), the latter lends its unit from the
temperature scale and is untouched by any 7-depen-
dence of AC,. However, we were unable to find in the
literature any systematic study that would demonstrate
this particular linearity from experimental data, nor its
strong dependence on the similarity of congeners, nor
its highest quality at T = Tpedian. The distinct linear
grouping of the theoretically calculated molecules (of
chemically very different nature from that of proteins or
nucleic acids) is at least inasmuch significant as their
thermodynamic parameters are independently derived
from partition functions rather than from experimental
enthalpies or experimental equilibrium constants, and in

Page 4 of 10

spite of the not entirely exact nature of the calculation
of S (due to the harmonic oscillation approximation).

Taken together, the similarity-dependent linearity of
AGr . vs. T, quantified through the regression coef-
ficient rp_ . , seems to be as general as the whole the-
ory of thermodynamics is. It may thus be that this
linearity’s origin lies at least in part in the mathematical
structure of thermodynamics, not entirely in the physics
for which thermodynamics was designed to describe.
Therefore we proceed with deriving general conse-
quences, with respect to physics, such as the entangle-
ment of the First and Second Laws for groups of similar
objects as mentioned in the introduction. We continue
with the mathematical and geometrical analysis of a
function that was generated from the combination of
equations 3, 8 (both right-hand side), 4 and 5 to give
through the elimination of AGt equations 9 and 10,
i.e., the fundamental energy-entropy relationship and
mathematical basis for the 5D parameter space
{AHTm ; ASTm; m=AHT_ /ASTm;AGT =AH-T-ASy; T} .
Equation 9 is a simplified version for AC, = 0 (for
clarity) of the general form as shown in equation 10.
Both equations can be analytically solved for AS;
(eqn. 26 [see additional file 1]).

hTT+ASTm 0
AH; =T-AS; L™ ©)
" ™ Sp+AST
i ©( AC,(T)
hr j AC,(T)T +T j (% JdT
T, T, A8, (10)
AHp =T-ASy - T

St +ASTm

The above functions are variants of the well known
quadric x = y-z of the shape of a hyperbolic paraboloid
(where x = AHy ,y = ASy and z = T), thus, of a sin-
gle saddle point centered in the origin {x = 0; y = 0; z =
0} and the S4-symmetric function spreading from there
with an all-negative Gaussian curvature (Figure 1). Any
temperature dependence of AC,(T) is consistent with
the hyperbolic paraboloid (eqn. 9) as shown in equation
10. For AC, = 0 (eqn. 9 with kit = hg + h1-T and st =
so + s1-T from the van’t Hoff datasets) the basic shape of
the function does not change when compared to x = y-z,
although the function area may be quite heavily ‘dis-
torted’ (not shown). However, for AC, = 0 = const.
(eqn. 9 with ht = hg + hy'T + hy-T'InT and st = 5o +
s1-T + so-T'InT) the group constants /gy, and sy, that
were obtained from the experimental calorimetric data-
sets produced shapes of the eyebrow-rising kind. In Fig-
ure 2 four views of the same 3D-projection, AHt versus
ASt and T, of the thermodynamic 5D parameter space
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Figure 1 3D Projections at T = 298 Kelvin of a 5D hyperbolic paraboloid (eqns. 9, 10) where hy = T-sy and AC, = 0. Dimensions: AH, AS,
AH = TAS (= AGy), AH/AS (= T,,) and T. The Gaussian curvature K of the hyperbolic paraboloid is negative everywhere: K = — (1 + AS? + AH?)?.
Left: Ty = AH/AS. The function T, = AH/AS is identical in shape as T,,, = AG/AS + T, in these projections the saddle point is at {AH = 0; AS = 0;
T = O} Right: AH/AS = T, = AH-298 K/(AH — AGaegy). The function T,,, = AH-T/(AH — AGy) is identical in shape as T, = AGr-T/(AH - AGy) + T; in
these projections the saddle point is at {AH = 0; AGt - 208k = 0; Ty = T = 298 K}. The vertical central lines mark AH = AS = AGogk = 0; the lower
half of the plots have no physical meaning (quadrants where T, < 0 Kelvin).

is shown for one particular but representative calorime-
trically measured protein mutant group (mutants of Sta-
phylococcal Nuclease). In Figure 3 one to two views of
three different 3D-projections for the same mutant
group are depicted. Both Figures 2 and 3 focus on the
zone that contains the experimental data (yellow dots).
The interested reader is welcome to copy any set of
experimental group constants /., and sq., [additional
file 2], plot equation 9 at any scale (best solved for
ASy  to suppress a maximum of asymptotic planes in
certain 3D projections) and enjoy the shapes and worm-
holes created by the T'InT terms. A more comprehen-
sive study on the characteristics of this function shall be
published elsewhere.

The yellow line in Figure 3d, i.e. the experimental iso-
therm at T = Tpeqian, lies in a ‘valley’ at Tiedian = 320.2
Kelvin created by the saddle of this particular hyperbolic
paraboloid. It seems that this isotherm is the best
defined of all T, therefore, producing the best linear
regression coefficient rt_ . Each straight line in AGy
versus (AH/AS)y = that represents a structurally simi-
lar group is, in geometric terms, a geodesic on the
hyperbolic paraboloid. The corresponding group func-
tions AHp (ASy ) or ASp (AHg ), as expressed
through equations 9 and 10 are therefore also geodesics.
Geometric considerations indicate that the datapoints
produce the best rp values in AGp =~ vs.
(AH/AS)r,_, when they are closest to the maximal
negative curvature, thus, to the saddle point of the
hyperbolic paraboloid (cf. Figure 3d). Flatter curvatures,

thus, steeper surface areas of the hyperbolic paraboloid
farther away from the saddle point (cf. Figure 1) allow
for a higher dispersal of the datapoints owing to idiosyn-
cratic AC,, values, which leads to lower regression coeffi-
cients rt.

Independently of geometric considerations, we inter-
pret this consistently observed linearity as a (physically)
‘minimal expense’ or (mathematically) ‘minimal action’
effect: The appearance or evolution of small structural
changes within the same group, i.e., without touching
essential framework structuring, can only result in con-
stantly proportional, therefore, unevolving free energy
changes being ‘linear’ with respect to their equilibrium
temperature changes. A thermodynamic interpretation
of this linear relationship would be that incremental
irreversible changes within a group of reversibly
dynamic similar but distincty different structures are
just as reversible changes are: virtually uncoupled, there-
fore, additive and independent of the path taken in
between, as is the prerequisite for obeying the Gibbs-
Helmholtz equation and synonymous to AG and AF
being state functions.

One might argue that the linearity of equation 8 is a
simplified manifestation of the Taylor series expansion
for any mathematical function f(x) = f(xo) + (df/dx)-(x —
xo) + (A*fdx?)-(x — x0)* + (d3f1dx®)-(x — x0)® +... which
always becomes approximately linear for any slowly
varying function f(x), AGy__  in this case, sufficiently
close to the reference point xg (T, or AHp /ASTm in
this case). In performing the linear correlations AGt
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Figure 2 3D-Projections AHy versus ASy and T of a 5D hyperbolic paraboloid using experimental T-independent AC,, values. The
function is specific of the protein mutant family Staphylococcal Nuclease at pH 7; the primary data were obtained from ProTherm entry numbers
107-120. (a) and (b): Two relatively narrow and orthogonally oriented wormholes in the central region of the quadric. (c) and (d): The smaller
wormhole — also visible in (b) at higher temperatures — hosts the experimental data, cf. yellow dots in (d), from which the function was
calculated using equations 8 and 9 where hy = hg + hy-T + h,'TInT and st = sq + 51T + s TInT [see additional file 2]. The narrowness of such
wormholes is characteristic for a ubiquitous compensation of AHr against ASy, as briefly mentioned in the introduction, and suggests why
empirically good, albeit statistically questionable, 2D-linear relationships are found in a vast majority of experimental AHy vs. ASy correlations in
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versus AHp [ASy at T =Tedian, We do not explicitly
claim that the linear relation holds at all temperatures.
We do claim, however, that a correlation between AGt
and T,, at any temperature T using a polynomial of
higher than first (linear) degree, as generalised in the
above Taylor series expansion, will lead to an analyti-
cally solvable relationship for AHy (ASy ) or
ASt (AHy ). We did not prove the generality of this
claim but solved AH — T-AS = hy — [(AH/AS)-sy 1 +
(AH/AS)*s5 1 + (AH/AS)3~33,T], which is a Taylor series-
expanded version of equation 8 (where AC, = 0), for
AH and AS, respectively. The expanded nonlinear var-
iants with s3 1t = 0 (quadratic) and s3 1t # 0 (cubic) did
each result in at least one non-complex analytical solu-
tion for AH(AS) and AS(AH), albeit bearing a more
complicated mathematical structure (not shown).

In other words, we claim that a fundamental relation-
ship between energy and entropy for a group of similar
objects results from any analytically solvable relationship
between AGy and AHy [ASy . We opt for the
simplest, a linear solution: AGy and AHy /AS; are
proportional over a reasonably large temperature range.
Most important for physics is the fact that group spe-
cific thermodynamic parameter spaces depict the only
possible values that can be realised by a particular group
of similar objects. The rest is void, terra incognita for
the group members, unless an object changes its charac-
teristics (structure, composition, etc.), unless it ‘dissimi-
larises’ off from ‘its’ group - most likely, to join some
other one. The definition of a group, that is, how to
determine whether a number of individuals belong to
the same group or not, seems at first sight worrying or
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Figure 3 3D-Projections other than AH; versus ASy of a 5D hyperbolic paraboloid using experimental T-independent AC, values. The
function is specific of the same group as in Fig. 2. Dimensions (for AC, = const): AHy, AGy, T and T, The yellow dots are the experimental
datapoints {AHrm, AGr _ } (b), {AHrm, T} (©) and {7y, AGr_ 1 (d). The yellow line is the linear regression in AGr vs. Try, at Tredian = 320.2 K With
the exception of the projection (d), where wormholes are never found and the quality of the linear regression is best when the datapoints
gather around an average zero free energy, the size of the wormholes that harbor datapoints in all other than AHr vs. ASt projections, cf. (b) and
(0), precludes any linearity through attempted empirical datapoint correlations. All plots generated by MATHEMATICA® (Wolfram Inc.) and edited
in PHOTOSHOP® (Adobe).

at least not clearly solved. However, when we think of
individuals as being more or less similar to one another,
we see that a clear distinction between different groups
is not a fundamental issue. Similarity does exist; in the
microscopic and macroscopic world it is often a matter
of judgement according to some objective, statistically
relevant technical signal (at highest available resolution)
or at least a subjective physiological ‘measurement’
(“I know it when I see it”, ¢f. Graphical Abstract). For
microscopic objects such as molecules, one should

never be tempted to define a group through a good lin-
ear regression coefficient only; independent knowledge
and/or studies are mandatory. For instance, the advan-
tage of studying mutant protein families not only means
being able to analyse a large number of families and
sometimes many congeners within one family. Most
importantly, we are also certain that single or even mul-
tiple site mutants of the same protein do indeed belong
to the same structural group, the mutants are undoubt-
edly similar to one another. Other molecular systems
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such as synthetic host-guest complexes or water clusters
may be less evident to this respect. Still other objects
might be even more readily grouped than mutant pro-
teins (cf. Conclusion). The concept of similarity is intrin-
sically a not readily quantifyable one because intuitively
it seems to be a not very objective ‘measurement’, at
least down to Planckian scales: How similar and with
respect to what exactly?

We are free to group similar objects essentially at will.
For example, we can group one set of RNA hairpins
into two families, the one that bears various all-Watson-
Crick pairs and the one that contains various single-mis-
matched base pairs at different positions in the stem,
the stem length and loop sequence being the same in
both families [6]. We can overlook this subtle difference
and treat those hairpins as one group that consist of the
same loop sequence and stem length irrespective of sin-
gle mismatches being present or absent in the stem.
The outcome will be a slightly lower linear regression
coefficient for this group. It can then be compared to
another group of RNA hairpins showing, for example,
the same stem length and stem sequence variations but
a different loop sequence. We can treat protein mutant
families with the same varied degrees of precision/reso-
lution. We could define all known proteins as belonging
to the same group and compare it to a more drastically
different group of compounds (objects). Nothing pre-
vents us from grouping objects at still lower resolution;
the obvious trade-off will be increasingly lower linear
regression coefficients. As a matter of fact, there is no
a priori objection that we can think of to the grouping
of the entire universe and comparing it to some other
one, if it were observable. In principle, one would have
to agree upon a set of observables (like energy, entropy
and temperature), measure them on a statistically repre-
sentative number of individual members of what we
decide, through some hopefully objective criterium, to
call a group, determine the corresponding group para-
meters and then gain easier access to more members of
the same group but also, to obtain an objective means
for the comparison of this group to another one. In
practise, of course, as we embrace more and more dis-
similar objects, we will probably evoke increasingly
unacceptable linear regression coefficients. Where this
limit of a meaningful group analysis lies remains to be
seen.

Conclusion

In this study we introduce a geometrical parameter
space description of thermodynamics and offer a general
way of objectively quantifying similarity (to whatever
resolution) of individual objects based on two well
known abstract notions (not postulated ‘empirical’ phy-
sical parameters): the use of the knowledge of a group
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membership, and the mathematical relationship between
difference and ratio being the results from the two most
fundamental mathematical operations, substraction and,
respectively, division. The latter notion opens access to
a higher than three-dimensional (AH, AS, T) geometrical
description of thermodynamics through expansion of
the parameter space with AH — T-AS and AH/AS. The
combination of both notions indicates a group-related
redundancy in the mathematical structure of thermody-
namics; a redundancy which becomes evident when
relating substraction and division for the characterisa-
tion of similar objects. This redundancy necessarily
unravels a group-related fundamental relationship
between energy and entropy for similar objects and,
possibly, a general unified law of thermodynamics for
structured matter. According to our findings, any group
of similar objects may be characterised by precisely how
the energy and entropy of each individual group mem-
ber is related (coupled) to one another. We show that
similar dynamic structures, for example molecules,
‘minimise their action’ on thermodynamic state changes
such that, within a structural framework — within ‘a
group’ as specified by the group parameters it and st
using equations 8, 9 and 10 — the distinction between
energy and entropy becomes a formal one.

The usually incomplete knowledge of all molecular
properties of a thermodynamic system, such as differen-
tial solvation, salt, and bulk solvent effects in biomolecu-
lar systems, continues to confront us with the limitation
of exactly calculating the free energy, the enthalpy, or the
entropy from the fundamentals. However, having at hand
reliable experimental or theoretical data of both AG and
AH of as many group members of similar structures as
possible, thus, of a statistically sufficient number of group
members, we can predict from either AH or AG of more
group members their respective AG or AH and concur-
rently AS. The relatively simple mathematical structure
of group thermodynamics allows us to quantify through
linear regressions the structural similarity imprinted into
the thermodynamic behavior of, in principle, any struc-
tural framework. On a molecular scale, group thermody-
namics may strongly simplify the elucidation of entropies
of molecules that are known to belong to a group of simi-
lar compounds through a bypass of costly calculations of
the vibrational components of idealised partition func-
tions. With the knowledge of the group parameters
ht and st at hand, S can be calculated from U or H.
In addition, it may be a possibly useful complement for
cross-checking AG calculations that have been obtained
from simulations using molecular dynamics techniques.
Generally group thermodynamics may contribute to
systematic analyses in biomolecular and chemical ther-
modynamics and, when applied to chemical reaction
kinetics, in systems chemistry.
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Theories from quite different domains such as, to
name a few, probability theory [7-10], information the-
ory and the emergence of complex systems [11-18],
quantum relativity/cosmology [19-29] and string theory
[30] operate with entropy and the Second Law of ther-
modynamics yet in conjunction with parameters differ-
ent from the ones studied here. Urgent problems are
being at least attacked, and possibly solved, through the
insight into apparent and/or fundamental analogies
between statistical thermodynamics and, for example
(respectively), randomness of sequential irregularities
(“algorithmic entropy”, “approximate entropy”), compu-
tational compactness (“logical depth”), quality change of
hereditary information (change in systemic “knowledge”
through periodically discarded “Shannon entropy”), the
dynamics of black holes (“Bekenstein-Hawking
entropy”), and tracing back the microscopic origin of
their area-entropy by counting the degeneracy of peri-
odic and persistent topological defects (Bogomol'nyi-
Prasad-Sommerfield soliton bound states) in certain
kinds of supersymmetric branes that mimic the thermo-
dynamics of idealised extremal, highly charged black
holes. In all above cases the problem arises of how to
reliably quantify or sample randomness, logical depth,
knowledge, entropy, in order to understand their physi-
cal origins and perhaps their development over time.
The energy-entropy relationship derived from thermody-
namic group characteristics may help solve one or the
other problem, in particular, when the to be analysed
physical objects are not as potentially overwhelmingly
dissimilar as chemical systems can be — in order to
ease, for a start, the choice of groups.

Black holes, being the most immensely dense and,
with respect to their composition, the perhaps most uni-
form objects known in physics, are all in a state of max-
imal entropy and are thought to differ from one another
through, out of all known matter, the least of character-
ising parameters; only mass, angular momentum and,
for some limited time period, electric charge makes
them different: “black holes have no hair”. In contrast,
elementary particles may differ through a whole plethora
of characteristics (according to the standard model) and
the variability, thus, potential dissimilarity of objects
that are composed of these elementary particles (of ‘nor-
mal” nonrelativistic matter) multiplies, i.e., increases at a
geometric rate with the number of involved particles. If
micro black holes indeed existed and could be transi-
ently generated in future Large Hadron Collider experi-
ments, if different classes of such potentially highly
similar objects could be observed and analysed, we
would predict that the relationship between their gravi-
tational energy and the surface area of their event hori-
zon would correlate in a fashion that were characteristic
for their kind: Energy (= mass) and entropy (= surface)
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would correlate, through equation 10, differently, i.e.,
with different group parameters for objects of a particu-
lar (range of) angular momentum and electric charge
than for another. Distinct groups should appear and be
best visible in free energy correlations as formulated in
equation 8. A difficulty might arise from the fact that
micro black holes are not expected to be formed in a
thermodynamic equilibrium, but rather ‘kinetically con-
trolled’. How then to measure free energy? We imagine
that a measure of free energy of micro black holes
would be their abundance under given experimental
conditions: Plot under maximum and constant total
abundance (‘steady state’) conditions the logarithm of
abundance (through counting) versus ratio of gravita-
tional energy (mass) over surface (of the event horizon).
The linearity should produce the best linear regression
coefficients when, within a group of analysed micro
black holes, the median mass is populated most.

Additional material

Additional file 1: GraphMath_SI. Graphs containing a large number of
representative regression plots, statistical analyses and the Mathematical
Appendix.

Additional file 2: NumSI. Numerical primary data (tab-delimited),
optimised parameters and regression coefficients from linear regressions
and non-linear curve fittings, which can be independently readily
reproduced from the given primary data.
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