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Text Abstract

Background: Many biological systems contain complex precipitation patterns. These structures are considered to
be the result of finely tuned and genetically encoded developmental pathways. The amount of encoded
information needed to generate and manipulate these structures is poorly understood. Investigating the dynamics
of spontaneous pattern formation in non-biological systems provides insights to the physio-chemical phenomena
that biological systems must have harnessed for living systems and that modern scientists need to understand for
complex nano-technological applications.

Results: Here we show that highly complex, precipitation patterns similar to those found in biological systems can
be formed in simple Cu(II)-oxalate systems. In these Cu(II)-oxalate systems, structures are constructed by a hierarchy
of multiple processes that are precisely self-organized in space and time to form interconnected causal networks
that generate complex and diverse structures dependent on construction trajectories that can be controlled by
minor variations of initial conditions.

Conclusions: Highly complex precipitation patterns similar to those found in biological systems can be generated
without a correspondingly complex set of instructions. Our result has implications for understanding early biotic
systems that existed prior to the evolution of sophisticated genetic machinery. From an applications perspective,
processes and structures that occur spontaneously are the building blocks for novel system chemistry based
technologies where products are self-constructed. We also provide a simple model of chemical system that
generates biomimetic structures for the study of fundamental processes involved in chemical self-construction.
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Background
The formation of complex precipitation structures in
biological systems such as those found in diatoms,
coccolithophorids, corals and seashell shave been the
subject of intensive investigations [1-3]. Such precipi-
tation structures are hierarchical, being constructed of
many different substructures on nano, meso, micro
and higher scales. Molecular biology is useful for
understanding which genes are important for the gen-
eration of these structures, however, the physical and
chemical processes that generate complex structures
must also be studied in order to understand how
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reproduction in any medium, provided the or
biological systems evolved to manipulate them as well
as for technological applications. Until recently, most
chemistry-centered studies have focused on elucidat-
ing the chemical compositions of structures’ subunit
crystals and methods for controlling crystal morph-
ologies [3-5]. Here we show that highly complex pre-
cipitation structures can be formed in very simple Cu
(II)-oxalate systems. Our results suggest that the for-
mation of many highly complex structures seen in
nature may occur by nucleating and regulating spon-
taneous construction processes.
Complex precipitation patterns are naturally found

in both biological and non-biological systems. Bio-
logical precipitation patterns are precisely organized
and are the products of multiple processes which,
despite some progress made in the field of pattern
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formations and in self-assembly [6-10], are still be-
yond the technical capabilities of modern chemists. In
contrast, complex non-biological precipitation forma-
tions such as stalagmites and stalactites [11], Liese-
gang Rings [12], geological structures [13], snowflakes
and Silicate Gardens [14-22] have been synthesized
in vitro. These structures may share some similarities
to biological structures and are considered important
in the study of the origin of life [23,24]. However,
these non-biological structures are usually the pro-
ducts of one process and one “building element”
such as the crystallization of water molecules in the
formation of snowflakes. The Cu(II)-oxalate systems
we describe are more similar to the biological pre-
cipitation formations with multiple different “build-
ing blocks” and numerous processes that are
precisely organized in space and time yet form
spontaneously.
Systems Chemistry [25-27], similar to Systems

Biology is concentrated mostly on the structures
and properties of complex systems. Our understand-
ing of how such systems can emerge is less devel-
oped and a general theory of self-construction does
not yet exist. In this study we concentrate almost
exclusively on how complex structures construct
themselves.
Figure 1 Complex precipitation structures: a Fingers with a precipitat
the pellet is visible (20 min after beginning of experiments). B Top view of
concentration 0.11 M 24 h. C Side view of this structure. The formation of t
picture was taken after 24 h.
Results and discussion
In the present system, a pellet of copper sulfate was
immersed in solutions with different concentrations of
oxalate and the processes that lead to complex struc-
tures were observed. In each case, the copper dissolved
into the surrounding solution [18]. Due to density differ-
ences, the more concentrated solution sinks to the bot-
tom of the reaction dish and spreads across it to form a
layer on the bottom. The bottom solution then moves
outward from the pellet, while the upper solution moves
towards the pellet.
At an oxalate concentration of 0.02 M during the

movement of solutions, copper oxalate is formed and
makes a thin finger-like precipitation pattern. At
0.05 M sodium oxalate, in addition to the fingers, a
light blue disc-like structure made of CuC2O4 with
a diameter of about 3 cm develops on the bottom
of the dish (Figure 1A). When the oxalate concen-
trations increased above 0.05 M the disk becomes
more pronounced and reaches 1 mm in thickness.
At 0.11 M oxalate a dark blue crystalline “urchin”
structure not observed at lower oxalate concentra-
tions forms while the thin fingers are absent
(Figure 1B & C). The dark blue crystal growth begins
from many initiation points all around the disc
and radiates in all directions. Chemical analysis
ion disc, concentration of oxalate 0.05 M. On the left upper corner
a precipitation disk (CuC2O4 ) with crystals on top, oxalate
he disk occurs in 20 min. The disk diameter is about 3.0 cm. The
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confirms that these dark blue crystals are made from
Na2Cu(C2O4)2 ×2H2O.
The light blue crystals which are the subunits of the

thin fingers (Figure 1A) and light blue disk (Figure 1A
&B) are formed by the following reaction:

Cu2þ þ C2O4
2� ¼ CuC2O4 sð Þ:Ksp ¼ 4:4� 10�10

In our system, at oxalate concentrations above 0.11 M,
the CuC2O4(s) undergoes dissolution according to fol-
lowing reaction:

CuC2O4 sð Þ þ C2O4
2� ¼ Cu C2O4ð Þ22�: Ksp ¼ 107:6

This reaction provides a necessary reactant for the for-
mation of the dark blue Na2Cu(C2O4)2 ×2H2O crystals
(Figure 1B & 1C) according to the following equation:

2Naþ þ Cu C2O4ð Þ22� þ 2H2O
¼ Na2Cu C2O4ð Þ2 � 2H2O sð Þ

The precipitation patterns are substantially more com-
plicated for 0.15-0.25 M oxalate as presented in Figure 2.
Initially, a CuC2O4(s) precipitation disk forms. At the
edge of this disk Na2Cu(C2O4)2 × 2H2O(s) structures very
distinct from the dark blue crystals seen at 0.11 M oxal-
ate (Figure 1B & 1C) form from a handful of initiation
Figure 2 Complex precipitation structure at 0.15-0.25 M sodium oxala
diameter of 3 cm, (10 min) B “Fans” covering the entire disk, ( 2 h), C
24 hours. The dark blue pillars supporting structure are visible.
points (Figure 2A). Crystalline projections “fans” from
these initiation points grow towards the center of the disk
and eventually cover its entire surface (Figure 2B & 2C).
During a period of approximately 10 hours, the CuC2O4(s)

disk disappears altogether through transformation to the
structure shown in Figure 2D. The volume of this struc-
ture increases by a factor of 10 in comparison with the
structure presented on Figure 2A & B and the height
changes from 2 mm to 20 mm. The stem of this “mush-
room” structure is filled with a gel-like substance. The gel
was removed from the solution, washed, and dried for
analysis which determined that the composition is Na2Cu
(C2O4)2 ×O2H2O.
We also investigated the microscopic structure of the

precipitation patterns and found that each was con-
structed from a morphologically distinct crystal subunit
(Figure 3A-D). The CuC2O4 crystals forming the light
blue fingers (Figure 1A) are constructed from filaments
(Figure 3A) and theCuC2O4precipitation disk is con-
structed from intricate spherical subunits (Figure 3B).
The dark blue Na2Cu(C2O4)2 × 2H2O crystal (Figure 1B
& 1C) subunits are seen in (Figure 3C). The fans
(Figure 2B & 2C) are composed of other unique crystal
structures (Figure 3D). Their formation is presumably
controlled by system hydrodynamics where local
te concentration: a Fans forming at the edge of the disk with a
Magnification of the fans, D “Mushroom” structure formed after



Figure 3 Images of crystals: a SEM images of crystals constituting the fingers, the width of the picture corresponds to 64 μm. B SEM
image of crystals forming the precipitation ring, the size of the picture correspond to 14,2 μm. C Crystals from Figure 1C, D. D Structure from
“fans” Figure 2A, C. E Structure obtained after drying “mushroom” from Figure 2D, with 1.0 cm. F Crystals after drying mushroom, SEM image,
width of picture correspond to 85,3 μm.
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changes in oxalate concentrations are causing changes
in solution density and viscosity. Formation of the
mushroom morphology is more complex. In the micro-
scopic picture shown on (Figure 3E), one can see hol-
lows that develop from the drying of the gel. The
formed crystals are presented on (Figure 3F).
As is the case in biological systems, the formation of

these complex structures involves many processes. Phys-
ical processes include the diffusion of copper ions from
the pellet to the oxalate solution, establishment of a
density gradient resulting in the solute convection of
concentrated solution downwards and away from the
pellet across the bottom of the dish while less dense
solution moves toward the pellet. Chemical processes
include CuSO4 dissolution, formation of CuC2O4 crys-
tals with two different morphologies, formation of
crystals of Na2Cu(C2O4)2 × 2H2O with two different
morphologies and a gel. The CuC2O4(s) precipitation
disk serves to organize crystal growth. For oxalate con-
centrations in the range of 0.15-0.25 M, we observe meta-
morphosis i.e., the transition of one form into another
(see Figure 2B, 2D). Usually, in hierarchical constructions,
one structure is built from others. In the presented
experiments, however, there is a full metamorphosis to a
different structure without elements of the first structure
remaining.
In our experiments, the initial conditions have a “seed”

arrangement which is somewhat analogous to biological
morphogenesis. In this experiment, the copper sulfate
“seed” is surrounded by an environment of sodium oxal-
ate. This non-homogeneous arrangement establishes
various potential gradients that define a network of
chemical and physical processes. This network and its
oxalate concentration dependent bifurcation points,



Pellet of CuSO4 submerged in Na2C2O4 solution 

Dissolution of CuSO4 

Pellet surrounded by heavy  
solution of copper 

Disk of CuC2O4 precipitate 

Gravity flow 

Saturated solution of  
Na2Cu(C2O4 )2  above the disk 
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See Figure 2B 
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Figure 4 The construction network of processes that governs
pattern formation. This network controls the movement of
materials and the precise spatial and temporal execution of
chemical and physical processes. Arrows indicate processes and
boxes formed precipitation structures. Different trajectories for
different oxalate concentrations are visible.
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shown in a schematic diagram (Figure 4), controls the
precise spatio-temporal execution of chemical and phys-
ical processes which lead to the construction of complex
precipitation patterns. The initially formed chemical
structures establish subsequent potential differences and
a cascade of processes develops. Small changes to system
parameters (i.e. initial oxalate concentration) leads to
switching the construction trajectory from one pathway
in the processes network to another, leading to a radic-
ally different structure therefore we can control the sys-
tem trajectory and which structures are formed.
The sophistication of processes and complexity of

structures that are generated by this simple system has
ramifications for our understanding of primitive life and
evolutionary processes. Some complex structures do not
need to have evolved in a slow, step by step fashion and
could exist in the absence of large amounts of genetic
Figure 5 Phase diagrams for system Cu(II)-oxalate.
information if organisms could nucleate spontaneous,
complex processes. Small changes in genes that control
nucleation conditions could also lead to drastic new
structural forms.

Conclusions
We have shown that highly complex, precipitation pat-
terns similar to those found in biological systems can be
formed in the Cu(II)-oxalate reaction (see Figure 5). This
simple system presents an excellent model for investigat-
ing the principles of self-construction. Future enquires
will explore the construction of more complex networks
of chemical and physical processes and investigate their
control via catalysts and inhibitors as seen in biological
systems. Ultimately, further understanding of self-
construction will enable us to comprehend the forma-
tion of complex structures in biology and develop tech-
nologies that lead to sophisticated self-constructed
materials.
Understanding and mastering the process of formation

of complex structures in chemical systems will lead to
an understanding of formation of complex structures in
nature. Mastering processes of controlling of networks
of chemical processes will lead to new technologies, ap-
plied especially on the nano level, where the process of
piece by piece assembly is not possible.

Experimental
A 1.0 g pellet of copper sulfate (VWR) was prepared by
grinding copper sulfate crystals in an electric grinder for
5 minutes and then casting it into a pellet using a pellet
maker commonly utilized in IR studies. Each pellet was
standardized to 1.0 cm in diameter and 4 mm in height.
A 22 cm diameter Petri dish was leveled and sodium ox-
alate was poured into the dish. Pellets were then placed
into the center of the reaction dish. Concentration of ox-
alate (VWR) was varied between 0.0 to 0.25 M. To de-
termine the crystal composition, the copper contents
were analyzed spectrophotometrically after dissolving
crystals in a solution of ammonia. The oxalate concen-
tration was determined by titration with permanganate
after dissolving the crystals in sulfuric acid. The experi-
ments were carried out at a temperature of 20 ± 1°C.
Scanning electron microscope images were taken of the
dried precipitate by a Hitachi S-4700 high-resolution
scanning electron microscope.
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