Stankiewicz J, Eckardt LH: Chembiogenesis 2005 and systems chemistry workshop. Angew Chem Int Ed 2006, 45: 342–344. 10.1002/anie.200504139
Article
CAS
Google Scholar
Kindermann M, Stahl I, Reimold M, Pankau WM, von Kiedrowski G: Systems chemistry: Kinetic and computational analysis of a nearly exponential organic replicator. Angew Chem Int Ed 2005, 44: 6750–6755. 10.1002/anie.200501527
Article
CAS
Google Scholar
Luisi PL: The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge University Press: Cambridge, UK; 2006.
Chapter
Google Scholar
Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF, (eds): Protocells: Bridging Nonliving and Living Matter. MIT Press: Cambridge, UK; 2008.
Google Scholar
Szostak JW, Bartel DP, Luisi PL: Synthesizing life. Nature 2001, 409: 387–390. 10.1038/35053176
Article
CAS
Google Scholar
McCaskill JS: Evolutionary Microfluidic Complementation Toward Artificial Cells. In Protocells: Bridging Nonliving and Living Matter. Edited by: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF. MIT Press: Cambridge, UK; 2008:253–294.
Chapter
Google Scholar
PACE Report Programmable Artificial Cell Evolution, What are protocells?[http://www.istpace.org/Web_Final_Report/the_pace_report/introduction/artificial_cells_in_pace/introduction_to_protocells_/what_are_protocells.html]
Rasmussen S, Chen L, Deamer D, Krakauer D, Packard N, Stadler PF, Bedau M: Transitions from nonliving to living matter. Science 2004, 303: 963–964. 10.1126/science.1093669
Article
CAS
Google Scholar
Ganti T: Chemoton Theory. Vol. 1: Theoretical Foundation of Fluid Machineries. Kluwer Academic/Plenum, New York, USA; 2003.
Chapter
Google Scholar
Griesemer J, Szathmáry E: Gánti's chemoton model and life criteria. In Protocells: Bridging Nonliving and Living Matter. Edited by: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF. MIT Press: Cambridge, UK; 2008:481–512.
Chapter
Google Scholar
Fernando C, Santos M, Szathmáry E: Evolutionary potential and requirements for minimal protocells. In Prebiotic Chemistry: From Simple Amphiphiles to Protocell Models. Volume 259. Edited by: Walde P. Top Curr Chem. Springer, New York; 2005:167–211.
Chapter
Google Scholar
Rasmussen S, Chen LH, Stadler BMR, Stadler PF: Proto-organism kinetics: Evolutionary dynamics of lipid aggregates with genes and metabolism. Orig Life Evol Biosph 2004, 34: 171–180. 10.1023/B:ORIG.0000009838.16739.40
Article
CAS
Google Scholar
Memorandum of Understanding (MoU) for the implementation of a European Concerted Research Action designated as COST Action CM0703: Systems Chemistry[http://w3.cost.eu/typo3conf/ext/bzb_securelink/pushFile.php?cuid=253&file=fileadmin/domain_files/CMST/Action_CM0703/mou/CM0703-e.pdf]
Eschenmoser A: The search for the chemistry of life's origin. Tetrahedron 2007, 63: 12821–12844. 10.1016/j.tet.2007.10.012
Article
CAS
Google Scholar
Blackmond D: Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci USA 2004, 101: 5732–5736. 10.1073/pnas.0308363101
Article
CAS
Google Scholar
Feringa BL, van Delden RA: Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed 1999, 38: 3418–3438. 10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V
Article
Google Scholar
Klussmann M, Iwamura H, Mathew SP, Wells DH Jr, Pandya U, Armstrong A, Blackmond DG: Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 2006, 441: 621–3. 10.1038/nature04780
Article
CAS
Google Scholar
Weissbuch I, Leiserowitz L, Lahav M: Stochastic "Mirror-Symmetry Breaking" via Self-Assembly, Reactivity and Amplification of Chirality; Relevance to Abiotic Conditions. In Prebiotic Chemistry: From Simple Amphiphiles to Protocell Models. Volume 259. Edited by: Walde P. Top Curr Chem. Springer, New York; 2005:123–156.
Chapter
Google Scholar
Addadi L, Berkovitch-Yellin Z, Weissbuch I, van Mil J, Shimon LJW, Lahav M, Leiserowitz L: Growth and dissolution of organic crystals with 'tailor-made' inhibitors - implications in stereochemistry and materials science. Angew Chem, Int Ed Engl 1985, 24: 466–485. 10.1002/anie.198504661
Article
Google Scholar
Noorduin WM, Vlieg E, Kellogg RM, Kaptein B: From Ostwald ripening to single chirality. Angew Chem Int Ed Engl 2008, 38: 9600–9606.
Google Scholar
Viedma C, Ortiz JE, de Torres T, Izumi T, Blackmond DG: Evolution of solid phase homochirality for a proteinogenic amino acid. J Am Chem Soc 2008, 130: 15274–15275. 10.1021/ja8074506
Article
CAS
Google Scholar
Ribó JM, Crusats J, Sagués F, Claret J, Rubires R: Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292: 2063–2066. 10.1126/science.1060835
Article
Google Scholar
Soai K, Shibata T, Morioka H, Choji K: Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 1991, 378: 767–768. 10.1038/378767a0
Article
Google Scholar
Soai K, Shibata T, Sato I: Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. Acc Chem Res 2000, 33: 382–390. 10.1021/ar9900820
Article
CAS
Google Scholar
Soai K, Shibata T, Kowata Y: Asymmetric synthesis of enantioenriched alkanol by spontaneous asymmetric synthesis. Japan Kokai Tokkyo Koho, JP 1997. 9–268179. Patent application date: February 1 and April 18, 1996
Google Scholar
Mauksch M, Tsogoeva SB, Martynova IM, Wei SW: Evidence of asymmetric autocatalysis in organocatalytic reactions. Angew Chem -Int Edit 2007, 46: 393–396. 10.1002/anie.200603517
Article
CAS
Google Scholar
Mauksch M, Tsogoeva SB, Wei S, Martynova IM: Demonstration of spontaneous chiral symmetry breaking in asymmetric Mannich and Aldol reactions. Chirality 2007, 19: 816–825. 10.1002/chir.20474
Article
CAS
Google Scholar
Ludlow RF, Otto S: Systems chemistry. Chem Soc Rev 2008, 37: 101–108. 10.1039/b611921m
Article
CAS
Google Scholar
Toiya M, Vanag VK, Epstein IR: Diffusively coupled chemical oscillators in a microfluidic assembly. Angew Chem Int Ed Engl 2008, 47: 7753–7755. 10.1002/anie.200802339
Article
CAS
Google Scholar
Kurin-Csörgei K, Epstein IR, Orbán M: Systematic design of chemical oscillators using complexation and precipitation equilibria. Nature 2005, 433: 139–142. 10.1038/nature03214
Article
Google Scholar
von Kiedrowski G: A self-replicating hexadeoxynucleotide. Angew Chem Int Ed Engl 1986, 25: 932–935. 10.1002/anie.198609322
Article
Google Scholar
Tjivikua T, Ballester P, Rebek J Jr: A self-replicating system. J Am Chem Soc 1990, 112: 1249–1250. 10.1021/ja00159a057
Article
CAS
Google Scholar
Lee DH, Granja JR, Martinez JA, Severin K, Ghadri MR: A self-replicating peptide. Nature 1996, 382: 525–528. 10.1038/382525a0
Article
CAS
Google Scholar
Whitesides GM, Mathias JP, Seto CT: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254: 1312–9. 10.1126/science.1962191
Strong L, Whitesides GM: Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 1988, 4: 546–558. 10.1021/la00081a009
Article
CAS
Google Scholar
De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW: Supramolecular polymerization. Chem Rev 2009, 109: 5687–5754. 10.1021/cr900181u
Article
CAS
Google Scholar
Helmich F, Lee CC, Nieuwenhuizen MML, Gielen JC, Christianen PCM, Larsen A, Fytas G, Leclere PELG, Schenning APHJ, Meijer EW: Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew Chem Int Edit 2010, 49: 3939–3942.
Article
CAS
Google Scholar
Mukhopadhyay P, Zavalij PY, Isaacs L: High fidelity kinetic self-sorting in multi-component systems based on guests with multiple binding epitopes. J Am Chem Soc 2006, 128: 14093–14102. 10.1021/ja063390j
Article
CAS
Google Scholar
Ghosh S, Wu AX, Fettinger JC, Zavalij PY, Isaacs L: Self-sorting molecular clips. J Org Chem 2008, 73: 5915–5925. 10.1021/jo8009424
Article
CAS
Google Scholar
Lehn JM: Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 1999, 5: 2455–2463. 10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H
Article
CAS
Google Scholar
Otto S, Furlan RLE, Sanders JKM: Selection and amplification of hosts from dynamic combinatorial libraries of macrocyclic disulfides. Science 2002, 297: 590–593. 10.1126/science.1072361
Article
CAS
Google Scholar
Benner SA: Receptor assisted combinatorial chemistry. 1995.
Google Scholar
Sadownik JW, Philp D: A simple synthetic replicator amplifies itself from a dynamic reagent pool. Angew Chem Int Ed 2008, 47: 9965–9970. 10.1002/anie.200804223
Article
CAS
Google Scholar
Carnall JMA, Waudby CA, Belenguer AM, Stuart MCA, Peyralans JJP, Otto S: Mechanosensitive self-replication driven by self-organization. Science 2010, 327: 1502–1506. 10.1126/science.1182767
Article
CAS
Google Scholar
Butlerow A: Formation synthetique d'une substance sucree. Compt Rend Acad Sci 1861, 53: 145–147.
Google Scholar
Ricardo A, Carrigan MA, Olcott AN, Benner SA: Borate minerals stabilize ribose. Science 2004, 303: 196–196. 10.1126/science.1092464
Article
CAS
Google Scholar
Lambert JB, Gurusamy-Thangavelu SA, Ma K: The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 2010, 327: 984–986. 10.1126/science.1182669
Article
CAS
Google Scholar
Powner MW, Gerland B, Sutherland JD: Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459: 239–242. 10.1038/nature08013
Article
CAS
Google Scholar
Kastrup CJ, Runyon MK, Lucchetta EM, Price JM, Ismagilov RF: Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks. Acc Chem Res 2008, 41: 549–558. 10.1021/ar700174g
Article
CAS
Google Scholar
Pompano RR, Li HW, Ismagilov RF: Rate of mixing controls rate and outcome of autocatalytic processes: Theory and microfluidic experiments with chemical reactions and blood coagulation. Biophys J 2008, 95: 1531–1543. 10.1529/biophysj.108.129486
Article
CAS
Google Scholar
Herdewijn P, Marlière P: Towards safe genetically modified organism through the chemical diversification of nucleic acids. Chem Biodivers 2009, 6: 791–808. 10.1002/cbdv.200900083
Article
CAS
Google Scholar
Böhler C, Nielsen PE, Orgel LE: Template switching between PNA and RNA oligonucleotides. Nature 1995, 367: 578–581. 10.1038/376578a0
Article
Google Scholar
Nielsen PE: Peptide Nucleic Acids and the origin of life. In Origin of Life: Chemical approach. Edited by: Herdewijn P, Kisakurek V. Wiley-VCH, Germany; 2008.
Google Scholar
Herdewijn P, Kisakurek V, (eds): Origin of Life: Chemical Approach. Verlag Helvetica Chimica Acta, Wiley-VCH, Germany 2008.
Google Scholar
Kozlov I, Politis P, Pitsch S, Herdewijn P, Orgel L: A highly enantioselective hexitol nucleic acid template for non-enzymatic oligoguanylate synthesis. J Am Chem Soc 1999, 121: 1108–1109. 10.1021/ja9836489
Article
CAS
Google Scholar
Sievers D, von Kiedrowski G: Self-replication of complementary nucleotide-based oligomers. Nature 1994, 369: 221–224. 10.1038/369221a0
Article
CAS
Google Scholar
Paul N, Joyce GF: A self-replicating ligase ribozyme. Proc Natl Acad Sci USA 2002, 99: 12733–12740. 10.1073/pnas.202471099
Article
CAS
Google Scholar
Lincoln TA, Joyce GF: Self-Sustained Replication of an RNA Enzyme. Science 2009, 323: 1229–1232. 10.1126/science.1167856
Article
CAS
Google Scholar
Levy M, Ellington AD: Exponential growth by cross-catalytic cleavage of deoxyribozymogens. Proc Natl Acad Sci USA 2003, 100: 6416–6421. 10.1073/pnas.1130145100
Article
CAS
Google Scholar
Chen X, Li N, Ellington AD: Ribozyme Catalysis of Metabolism in the RNA World. In Origin of Life: Chemical approach. Edited by: Herdewijn P, Kisakurek V. Wiley-VCH, Germany; 2008.
Google Scholar
Zhang DY, Turberfield AJ, Yurke B, Winfree E: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 2007, 318: 1121–1125. 10.1126/science.1148532
Article
CAS
Google Scholar
Peng Y, Choi HMT, Calvert CR, Pierce NA: Programming biomolecular self-assembly pathways. Nature 2008, 451: 318–322. 10.1038/nature06451
Article
Google Scholar
Hayden EJ, von Kiedrowski G, Lehman N: Systems chemistry on ribozyme self-construction: evidence for anabolic autocatalysis in a recombination network. Angew Chem Int Edit 2008, 47: 8424–8428. 10.1002/anie.200802177
Article
CAS
Google Scholar
Kauffman SA: Systems chemistry sketches. In Chemical Evolution across Space & Time. Volume 981. ACS Symposium Series, Washington, USA; 2008:310–324.
Chapter
Google Scholar
Kauffman SA: Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York, USA; 1993.
Google Scholar
Ashkenasy G, Jagasia R, Yadav M, Ghadiri MR: Design of a directed molecular network. Proc Natl Acad Sci USA 2004, 101: 10872–10877. 10.1073/pnas.0402674101
Article
CAS
Google Scholar
Dadon Z, Wagner N, Ashkenasy G: The road to non-enzymatic molecular networks. Angew Chem Int Ed 2008, 47: 6128–6136. 10.1002/anie.200702552
Article
CAS
Google Scholar
Szostak JW: Systems chemistry on early Earth. Nature 2009, 459: 171–172. 10.1038/459171a
Article
CAS
Google Scholar
Pantarotto D, Browne W, Feringa B: Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem Comm 2008, (13):1533–5. 10.1039/b715310d
Google Scholar
Peyralans JJP, Otto S: Recent highlights in systems chemistry. Curr Opin Chem Biol 2009, 13: 705–713. 10.1016/j.cbpa.2009.08.006
Article
CAS
Google Scholar