Leduc S. The mechanism of life. New York: Rebman Company; 1911.
Book
Google Scholar
Coatman RD, Thomas NL, Double DD. Studies of growth of silicate gardens and related phenomena. J Mater Sci. 1980;15:2017–26.
Article
CAS
Google Scholar
Cartwright JH, Garcia-Ruiz JM, Novella ML, Otalora F. Formation of chemical gardens. J Colloidal Surface Sci. 2002;256:351–9.
Article
CAS
Google Scholar
Stone DA, Goldstein RE. Tubular precipitation and redox gradients on a bubbling template. Proc Natl Acad Sci USA. 2004;101:11537–41.
Article
CAS
Google Scholar
Thouvenel-Romans S, Steinbock O. Oscillatory growth of silica tubes in chemical gardens. J Am Chem Soc. 2003;125:4338–41.
Article
CAS
Google Scholar
Pantaleone J, Toth A, Horvath D, Rother McMahan J, Smith R, Butki D, et al. Oscillations of a chemical garden. Phys Rev E. 2008;77:046207.
Article
CAS
Google Scholar
Pantaleone J, Toth A, Horvath D, RoseFigura L, Morgan W, Maselko J. Pressure oscillations in chemical garden. Phys Rev E. 2009;79:05621.
Article
Google Scholar
Boulay AG, Cooper GT, Cronin L. Morphogenesis of amorphous polymetalic cluster-based materials to microtubular network architecture. Chem Commun. 2012;48:5088–90.
Article
CAS
Google Scholar
Kaminker V, Maselko J, Pantaleone J. Chemical precipitation structures formed by drops impacting on a deep pool. J Chem Physics. 2012;137:18471.
Article
Google Scholar
Russell MJ, Hall AJ. From geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. Geochemical News. 2002;113:6–12.
Google Scholar
Ritchie C, Cooper GJ, Song YF, Streb C, Yin H, Parenty A, et al. Spontaneous assembly and real time growth of micrometer-scale tubular structures from polyoxometalate-based inorganic solids. Nature Chem. 2009;1:47–52.
Article
CAS
Google Scholar
Makki R, Al-Humiari M, Dutta S, Steinbock O. Hollow microtubes and shells from reactant loaded polymer beads. Angew Chem Int Ed. 2009;48:8752–6.
Article
CAS
Google Scholar
Maselko J, Strizhak P. Spontaneous formation of cellular chemical system that sustains itself far from thermodynamic equilibrium. J Phys Chem. 2004;B108:4937–9.
Article
Google Scholar
Cooper G, Kitson P, Winter R, Zagnoni M, Long D-L, Cronin L. Modular redox-active inorganic chemical cell. Angew Chem Int Ed. 2011;50:1–5.
Article
Google Scholar
Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH fronts. J Geol Soc Lond. 1997;154:377–402.
Article
CAS
Google Scholar
Fellermann H, Rasmussen S, Ziock HJ, Solé RV. Life cycle of a minimal protocell - a dissipative particle dynamics study. Artif Life. 2007;13:319–45.
Article
Google Scholar
Knutson C, Benkö G, Rocheleau T, Mouffouk F, Maselko J, Chen L, et al. Metabolic photofragmentation kinetics for a minimal protocell: rate-limiting factors, efficiency, and implications for evolution. Artif Life. 2008;14:189–201.
Article
Google Scholar
Askey I, Baer E, Sarikaya M, Tirrell D. Hierarchically structured materials. Material Research Society Pittsburg. 1992.
Google Scholar
Nilsson M. Hierarchical Organization in smooth dynamical systems. Artif Life. 2005;11:493–512.
Article
Google Scholar
Chandran D, Sauro H. Hierarchical modeling for synthetic Biology. ACS Synth Biol. 2012;8:1353–64.
Google Scholar
Noorduin W, Grinthal A, Mahadevan L, Aizanberg J. Rationally designed complex hierarchical microarchitectures. Sciences. 2013;340:832–7.
Article
CAS
Google Scholar
O’Leary L, Fallas J, Bakota E, Kang M, Hartgerink J. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibbre and hydrogel. Nat Chem. 2011;3:821–8.
Article
Google Scholar
Rasmussen S, Baas NA, Mayer B, Nilsson M, Olesen MW. Ansatz for dynamical hierarchies. Artif Life. 2001;7:329–53.
Article
CAS
Google Scholar
Rasmussen S, Bass NA, Mayers B & Nillson M. Anzatz for dynamical hierarchies in emergence: contemporary reading in philosophy and science. Bedau M, Humphreys P, editors. Cambridge: MIT Press. 2008.
Holland, John H. Signals and boundaries: building blocks for complex adaptive systems. MIT Press; 2012.
Bejan A. Shape and structure, from engineering to nature. Cambridge: University Press; 2000.
Google Scholar
Short MB, Baygents JC, Goldstein RE. A free-boundary theory for the shape of the ideal dripping icicle. Phys Fluids. 2006;18:083101.
Article
Google Scholar
Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of 1/ƒ noise. Phys Rev Lett. 1987;59(4):381–4.
Article
Google Scholar
Enquist BJ, Economo EP, HuxmanTE Allen AP, Ignace DD, Gillooly JF. Scaling metabolism from organisms to ecosystems. Nature. 2003;423:639–42.
Article
CAS
Google Scholar
Steven N, White J, Hem S. Structure of aluminium hydroxide gel I: initial precipitate. J Pharm Sci. 1975;65:1188–91.
Google Scholar
Swaddle TW. Silicate complexes of aluminum (III) in aqueous systems. Coord Chem Rev. 2001;219–221:665–86.
Article
Google Scholar
Allouche L, Gerardin C, Loiseau T, Ferey G, Taulle F. Al30: a giant aluminum polycation. Angew Chem. 2000;39:512–4.
Article
Google Scholar
Pophristic V, Balagurusamy V, Klein M. Structure and dynamics of the aluminum chlorohydrate polymer Al13O4(OH)24(H2O)12Cl7. Phys Chem Chem Phys. 2004;6:919–23.
Article
CAS
Google Scholar
Knight CT, Balec R, Kinrade S. The structure of silicate anions in aqueous alkaline solution. Angew Chem Int Ed. 2007;46:8148–52.
Article
CAS
Google Scholar
Jing L, Funghua Z. Structural changes and mineralization transformation mechanism of aluminum hydroxide gels from forced hydrolysis Al(III) solution containing Al4Al12(OH)24(H2O)12
7+ polyoxycation during aging. Chin J Geochem. 2010;29:107–12.
Article
Google Scholar
Akit JW. Multinuclear studies of aluminum compounds. Prog Nucl Magn Reson Spectrosc. 1989;21:1–50.
Article
Google Scholar
Martin BR. Fe+3 and Al3+, hydrolysis equilibria: cooperativity in Al3+ hydrolysis reactions. J Inorg Biochem. 1991;44:141–7.
Article
CAS
Google Scholar
Casey W. Large aqueous aluminum hydroxide molecules. Chem Rev. 2006;106:1–15.
Article
CAS
Google Scholar
Glaab F, Kellerrmeier M, Kunz W, Morallon E, Garcia-Ruiz JM. Formation and evolution of chemical gradients and potential difference across self-assembling inorganic membranes. Angew Chemie. 2012;124:4393–7.
Article
Google Scholar
Maselko J, Swinney H. Complex periodic oscillation in the Belousov-Zhabotinskii reaction. J Chem Phys. 1986;85:6430.
Article
CAS
Google Scholar
Maselko J, Segal N. Multiplicity of stationary patterns in an array of chemical oscillators. Model Chem. 1995;132:757.
CAS
Google Scholar
Bettencourt LMA, West G. A unified theory of urban living. Nature. 2010;467:912–3.
Article
CAS
Google Scholar
Damuth J. Scaling of growth: plants and animals are not so different. Proc Natl Acad Sci USA. 2001;98(5):2113–4.
Article
CAS
Google Scholar
Benjan A. The constructual law of organization in nature: tree-shaped flows and body size. J Exp Biol. 2005;208:1677–86.
Article
Google Scholar
Wikipedia: List of tallest buildings and structures in the world, [http://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures_in_the_world]