Mislow K: Absolute asymmetric synthesis: A commentary. Collect Czechoslov Chem Commun 2003, 68: 849–863. 10.1135/cccc20030849
Article
CAS
Google Scholar
Bolli M, Micura R, Eschenmoser A: Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2',3'-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem Biol 1997, 4: 309–320. 10.1016/S1074-5521(97)90074-0
Article
CAS
Google Scholar
Kondepudi DK, Asakura K: Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc Chem Res 2001, 34: 946–954. 10.1021/ar010089t
Article
CAS
Google Scholar
Green MM, Park J-W, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV: The macromolecular route to chiral amplification. Angew Chem Int Ed 1999, 38: 3139–3154.
CAS
Google Scholar
Girard C, Kagan HB: Nonlinear effects in asymmetric synthesis and stereoselective reactions: ten years of investigation. Angew Chem Int Ed 1998, 37: 2922–2959. 10.1002/(SICI)1521-3773(19981116)37:21<2922::AID-ANIE2922>3.0.CO;2-1
Article
Google Scholar
Zepik H, Shavit E, Tang M, Jensen TR, Kjaer K, Bolbach G, Leiserowitz L, Weissbuch I, Lahav M: Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water. Science 2002, 295: 1266–1269. 10.1126/science.1065625
Article
CAS
Google Scholar
Kondepudi DK, Kaufman RJ, Singh N: Chiral symmetry breaking in sodium chlorate crystallization. Science 1990, 250: 975–976. 10.1126/science.250.4983.975
Article
CAS
Google Scholar
Pincock RE, Perkins RR, Ma AS, Wilson KR: Probability distribution of enantiomorphous forms in spontaneous generation of optically active substances. Science 1971, 174: 1018–1020. 10.1126/science.174.4013.1018
Article
CAS
Google Scholar
Havinga E: Spontaneous formation of optically active substances. Biochim Biophys Acta 1954, 13: 171–174. 10.1016/0006-3002(54)90300-5
Article
CAS
Google Scholar
Viedma C: Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 2005, 94: 065504. 10.1103/PhysRevLett.94.065504
Article
Google Scholar
Frank FC: On spontaneous asymmetric synthesis. Biochim Biophys Acta 1953, 11: 459–463. 10.1016/0006-3002(53)90082-1
Article
CAS
Google Scholar
Mangel M: Simple theory of relaxation from instabilities. Phys Rev A 1981, 24: 3226–3238. 10.1103/PhysRevA.24.3226
Article
CAS
Google Scholar
Iwamoto K: A reaction model for generation of enantiomers via a stereoselective process by a racemic catalyst. Nippon Kagaku Kaishi 1999, 8: 527–531.
Article
Google Scholar
Soai K, Shibata T, Morioka H, Choji K: Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 1995, 378: 767–768. 10.1038/378767a0
Article
CAS
Google Scholar
Shibata T, Yonekubo S, Soai K: Practically perfect asymmetric autocatalysis using 2-alkynyl-5-pyrimidylalkanol. Angew Chem Int Ed 1999, 38: 659–661. 10.1002/(SICI)1521-3773(19990301)38:5<659::AID-ANIE659>3.0.CO;2-P
Article
CAS
Google Scholar
Sato I, Urabe H, Ishiguro S, Shibata T, Soai K: Amplification of chirality from extremely low to greater than 99.5% ee by asymmetric autocatalysis. Angew Chem Int Ed 2003, 42: 315–317. 10.1002/anie.200390105
Article
CAS
Google Scholar
Soai K, Shibata T, Sato I: Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. Acc Chem Res 2000, 33: 382–390. 10.1021/ar9900820
Article
CAS
Google Scholar
Soai K, Shibata T, Sato I: Discovery and development of asymmetric autocatalysis. Bull Chem Soc Jpn 2004, 77: 1063–1073. 10.1246/bcsj.77.1063
Article
CAS
Google Scholar
Soai K, Kawasaki T: Discovery of asymmetric autocatalysis with amplification of chirality and its implications in chiral homogeneity of biomolecules. Chirality 2006, 18: 469–478. 10.1002/chir.20289
Article
CAS
Google Scholar
Soai K, Kawasaki T: Asymmetric autocatalysis with amplification of chirality. Top Curr Chem 2008, 284: 1–33. full_text
Article
CAS
Google Scholar
Bolm C, Bienewald F, Seger A: Asymmetric autocatalysis with amplification of chirality. Angew Chem Int Ed 1996, 35: 1657–1659. 10.1002/anie.199616571
Article
CAS
Google Scholar
Blackmond DG: Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci USA 2004, 101: 5732–5736. 10.1073/pnas.0308363101
Article
CAS
Google Scholar
Podlech J, Gehring T: New aspects of Soai's asymmetric autocatalysis. Angew Chem Int Ed 2005, 44: 5776–5777. 10.1002/anie.200501742
Article
CAS
Google Scholar
Todd MH: Asymmetric autocatalysis: product recruitment for the increase in the chiral environment (PRICE). Chem Soc Rev 2002, 31: 211–222. 10.1039/b104169j
Article
CAS
Google Scholar
Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC: Chiral autocatalysis: where stereochemistry meets the origin of life. Chem Commun 2000, 11: 887–892. 10.1039/a908300f
Article
Google Scholar
Shibata T, Yamamoto J, Matsumoto N, Yonekubo S, Osanai S, Soai K: Amplification of a slight enantiomeric imbalance in molecules based on asymmetric autocatalysis. The first correlation between high enantiomeric enrichment in a chiral molecule and circularly polarized light. J Am Chem Soc 1998, 120: 12157–12158. 10.1021/ja980815w
Article
CAS
Google Scholar
Lutz F, Igarashi T, Kinoshita T, Asahina M, Tsukiyama K, Kawasaki T, Soai K: Mechanistic insights in the reversal of enantioselectivity of chiral catalysts by achiral catalysts in asymmetric autocatalysis. J Am Chem Soc 2008, 130: 2956–2958. 10.1021/ja077156k
Article
CAS
Google Scholar
Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki K, Ito M, Soai K: Asymmetric autocatalysis triggered by carbon isotope (13C /12C ) chirality. Science 2009, 324: 492–495. 10.1126/science.1170322
Article
CAS
Google Scholar
Kawasaki T, Shimizu M, Nishiyama D, Ito M, Ozawa H, Soai K: Asymmetric autocatalysis induced by meteoritic amino acids with hydrogen isotope chirality. Chem Commun 2009, 29: 4396–4398. 10.1039/b908754k
Article
Google Scholar
Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I: d - and l -Quartz-promoted highly enantioselective synthesis of a chiral compound. J Am Chem Soc 1999, 121: 11235–11236. 10.1021/ja993128t
Article
CAS
Google Scholar
Kawasaki T, Jo K, Igarashi H, Sato I, Nagano M, Koshima H, Soai K: Asymmetric amplification using chiral cocrystals formed from achiral organic molecules by asymmetric autocatalysis. Angew Chem Int Ed 2005, 44: 2774–2777. 10.1002/anie.200462963
Article
CAS
Google Scholar
Kawasaki T, Suzuki K, Hakoda Y, Soai K: Achiral nucleobase cytosine acts as an origin of homochirality of biomolecules in conjunction with asymmetric autocatalysis. Angew Chem Int Ed 2008, 47: 496–499. 10.1002/anie.200703634
Article
CAS
Google Scholar
Kawasaki T, Sato M, Ishiguro I, Saito T, Morishita M, Sato I, Nishino H, Inoue Y, Soai K: Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light. J Am Chem Soc 2005, 127: 3274–3275. 10.1021/ja0422108
Article
CAS
Google Scholar
Mills WH: Some aspects of stereochemistry. Chem and Ind 1932, 51: 750–759. 10.1002/jctb.5000513702
Article
CAS
Google Scholar
Pályi G, Micskei K, Zékány L, Zucchi C, Caglioti L: Racemates and the Soai reaction. Magy Kem Lapja 2005, 60: 17–24.
Google Scholar
Islas JR, Lavabre D, Grevy J-M, Lamoneda RH, Cabrera HR, Micheau J-C, Buhse T: Mirror-symmetry breaking in the Soai reaction: A kinetic understanding. Proc Natl Acad Sci USA 2005, 102: 13743–13748. 10.1073/pnas.0503171102
Article
CAS
Google Scholar
Lavabre D, Micheau JC, Islas JR, Buhse T: Kinetic insight into specific features of the autocatalytic Soai reaction. Top Curr Chem 2008, 284: 67–96. full_text
Article
CAS
Google Scholar
Gridnev ID, Serafimov JM, Quiney H, Brown JM: Reflections on spontaneous asymmetric synthesis by amplifying autocatalysis. Org Biomol Chem 2003, 1: 3811–3819. 10.1039/b307382n
Article
CAS
Google Scholar
Saito Y, Hyuga H: Rate equation approaches to amplification of enantiomeric excess and chiral symmetry breaking. Top Curr Chem 2008, 284: 97–118. full_text
Article
CAS
Google Scholar
Lente G: Stochastic kinetic models of chiral autocatalysis: A general tool for the quantitative interpretation of total asymmetric synthesis. J Phys Chem A 2005, 109: 11058–11063. 10.1021/jp054613f
Article
CAS
Google Scholar
Shao J, Liu L: Stochastic fluctuations and chiral symmetry breaking: exact solution of Lente model. J Phys Chem A 2007, 111: 9570–9572. 10.1021/jp0739364
Article
CAS
Google Scholar
Micskei K, Rabai G, Gal E, Caglioti L, Pályi G: Oscillatory symmetry breaking in the Soai reaction. J Phys Chem B 2008, 112: 9196–9200. 10.1021/jp803334b
Article
CAS
Google Scholar
Crusats J, Hochberg D, Moyano A, Ribó JM: Frank model and spontaneous emergence of chirality in closed systems. Chem Phys Chem 2009, 10: 2123–2131.
CAS
Google Scholar
Barabas B, Caglioti L, Micskei K, Pályi G: Data-based stochastic approach to absolute asymmetric synthesis by autocatalysis. Bull Chem Soc Jpn 2009, 82: 1372–1376. 10.1246/bcsj.82.1372
Article
CAS
Google Scholar
Soai K, Shibata T, Kowata Y: Preparation of optically active pyrimidylalkyl alcohols by spontaneous absolute asymmetric synthesis. Jpn Kokai Tokkyo Koho 1997. JP 09025269 A 19970128.
Google Scholar
Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y: Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis. Tetrahedron: Asymmetry 2003, 14: 185–188. 10.1016/S0957-4166(02)00791-7
Article
CAS
Google Scholar
Kawasaki T, Suzuki K, Shimizu M, Ishikawa K, Soai K: Spontaneous absolute asymmetric synthesis in the presence of achiral silica gel in conjunction with asymmetric autocatalysis. Chirality 2006, 18: 479–482. 10.1002/chir.20273
Article
CAS
Google Scholar
Singleton DA, Vo LK: A few molecules can control the enantiomeric outcome. Evidence supporting absolute asymmetric synthesis using the Soai asymmetric autocatalysis. Org Lett 2003, 5: 4337–4339. 10.1021/ol035605p
Article
CAS
Google Scholar
Soai K, Watanabe M, Koyano M: Synthesis of hydroxy ketones by chemoselective alkylation of keto aldehydes with dialkylzincs catalyzed by amino alcohol, diamine, or dilithium salt of piperazine. Bull Chem Soc Jpn 1989, 62: 2124–2125. 10.1246/bcsj.62.2124
Article
CAS
Google Scholar
Niwa S, Soai K: Asymmetric synthesis using chiral piperazines. Part 3. Enantioselective addition of dialkylzincs to aryl aldehydes catalysed by chiral piperazines. J Chem Soc Perkin Trans 1 1991, 2717–2720. 10.1039/p19910002717
Google Scholar
Lennartson A, Hedström A, Håkansson M: Diisopropyl( N , N , N' , N' -tetramethylethylenediamine)zinc(II), the first crystal structure of a diisopropylzinc complex. Acta Cryst 2007, E63: m123-m125.
Google Scholar
Sato I, Omiya D, Igarashi H, Kato K, Ogi Y, Tsukiyama K, Soai K: Relationship between the time, yield, and enantiomeric excess of asymmetric autocatalysis of chiral 2-alkynyl-5-pyrimidyl alkanol with amplification of enantiomeric excess. Tetrahedron: Asymmetry 2003, 14: 975–979. 10.1016/S0957-4166(03)00164-2
Article
CAS
Google Scholar
Blackmond DG, McMillan CR, Ramdeehul S, Schorm A, Brown JM: Origins of asymmetric amplification in autocatalytic alkylzinc additions. J Am Chem Soc 2001, 123: 10103–10104. 10.1021/ja0165133
Article
CAS
Google Scholar
Gridnev ID, Serafimov JM, Brown JM: Solution structure and reagent binding of the zinc alkoxide catalyst in the Soai asymmetric autocatalytic reaction. Angew Chem Int Ed 2004, 43: 4884–4887. 10.1002/anie.200353572
Article
CAS
Google Scholar
Klankermayer J, Gridnev ID, Brown JM: Role of the isopropyl group in asymmetric autocatalytic zinc alkylations. Chem Commun 2007, 3151–3153. 10.1039/b705978g
Google Scholar
Schiaffino L, Ercolani G: Unraveling the mechanism of the Soai asymmetric autocatalytic reaction by first-principles calculations: induction and amplification of chirality by self-assembly of hexamolecular complexes. Angew Chem Int Ed 2008, 47: 6832–6835. 10.1002/anie.200802450
Article
CAS
Google Scholar